Author: Thomas Hawkins
Publisher: Springer Science & Business Media
ISBN: 1461463335
Category : Mathematics
Languages : en
Pages : 698
Book Description
Frobenius made many important contributions to mathematics in the latter part of the 19th century. Hawkins here focuses on his work in linear algebra and its relationship with the work of Burnside, Cartan, and Molien, and its extension by Schur and Brauer. He also discusses the Berlin school of mathematics and the guiding force of Weierstrass in that school, as well as the fundamental work of d'Alembert, Lagrange, and Laplace, and of Gauss, Eisenstein and Cayley that laid the groundwork for Frobenius's work in linear algebra. The book concludes with a discussion of Frobenius's contribution to the theory of stochastic matrices.
The Mathematics of Frobenius in Context
Classical Mechanics and Quantum Mechanics: An Historic-Axiomatic Approach
Author: Peter Enders
Publisher: Bentham Science Publishers
ISBN: 1681084503
Category : Science
Languages : en
Pages : 380
Book Description
This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..
Publisher: Bentham Science Publishers
ISBN: 1681084503
Category : Science
Languages : en
Pages : 380
Book Description
This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..
Special Functions of Mathematical (Geo-)Physics
Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 3034805632
Category : Mathematics
Languages : en
Pages : 505
Book Description
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Publisher: Springer Science & Business Media
ISBN: 3034805632
Category : Mathematics
Languages : en
Pages : 505
Book Description
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Sotheran's Price Current of Literature
Change and Variations
Author: Jeremy Gray
Publisher: Springer Nature
ISBN: 3030705757
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.
Publisher: Springer Nature
ISBN: 3030705757
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.
General Catalogue of Printed Books to 1955
Author: British Museum. Dept. of Printed Books
Publisher:
ISBN:
Category : English imprints
Languages : en
Pages : 1248
Book Description
Publisher:
ISBN:
Category : English imprints
Languages : en
Pages : 1248
Book Description
The Kernel Function and Conformal Mapping
Author: Stefan Bergman
Publisher: American Mathematical Soc.
ISBN: 0821815059
Category : Mathematics
Languages : en
Pages : 269
Book Description
The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.
Publisher: American Mathematical Soc.
ISBN: 0821815059
Category : Mathematics
Languages : en
Pages : 269
Book Description
The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.
Bernhard Riemann 1826–1866
Author: Detlef Laugwitz
Publisher: Springer Science & Business Media
ISBN: 0817647775
Category : Mathematics
Languages : en
Pages : 372
Book Description
The name of Bernard Riemann is well known to mathematicians and physicists around the world. His name is indelibly stamped on the literature of mathematics and physics. This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann’s work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics.
Publisher: Springer Science & Business Media
ISBN: 0817647775
Category : Mathematics
Languages : en
Pages : 372
Book Description
The name of Bernard Riemann is well known to mathematicians and physicists around the world. His name is indelibly stamped on the literature of mathematics and physics. This remarkable work, rich in insight and scholarship, is addressed to mathematicians, physicists, and philosophers interested in mathematics. It seeks to draw those readers closer to the underlying ideas of Riemann’s work and to the development of them in their historical context. This illuminating English-language version of the original German edition will be an important contribution to the literature of the history of mathematics.
A History of the Theory of Elasticity and of the Strength of Materials
Author: Isaac Todhunter
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 970
Book Description
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 970
Book Description
Elementary Lie Group Analysis and Ordinary Differential Equations
Author: Nailʹ Khaĭrullovich Ibragimov
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 376
Book Description
Lie group analysis, based on symmetry and invariance principles, is the only systematic method for solving nonlinear differential equations analytically. One of Lie's striking achievements was the discovery that the majority of classical devices for integration of special types of ordinary differential equations could be explained and deduced by his theory. Moreover, this theory provides a universal tool for tackling considerable numbers of differential equations when other means of integration fail. * This is the first modern text on ordinary differential equations where the basic integration methods are derived from Lie group theory * Includes a concise and self contained introduction to differential equations * Easy to follow and comprehensive introduction to Lie group analysis * The methods described in this book have many applications The author provides students and their teachers with a flexible text for undergraduate and postgraduate courses, spanning a variety of topics from the basic theory through to its many applications. The philosophy of Lie groups has become an essential part of the mathematical culture for anyone investigating mathematical models of physical, engineering and natural problems.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 376
Book Description
Lie group analysis, based on symmetry and invariance principles, is the only systematic method for solving nonlinear differential equations analytically. One of Lie's striking achievements was the discovery that the majority of classical devices for integration of special types of ordinary differential equations could be explained and deduced by his theory. Moreover, this theory provides a universal tool for tackling considerable numbers of differential equations when other means of integration fail. * This is the first modern text on ordinary differential equations where the basic integration methods are derived from Lie group theory * Includes a concise and self contained introduction to differential equations * Easy to follow and comprehensive introduction to Lie group analysis * The methods described in this book have many applications The author provides students and their teachers with a flexible text for undergraduate and postgraduate courses, spanning a variety of topics from the basic theory through to its many applications. The philosophy of Lie groups has become an essential part of the mathematical culture for anyone investigating mathematical models of physical, engineering and natural problems.