Author: Alexander Molev
Publisher: American Mathematical Soc.
ISBN: 0821843745
Category : Mathematics
Languages : en
Pages : 422
Book Description
The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.
Yangians and Classical Lie Algebras
Author: Alexander Molev
Publisher: American Mathematical Soc.
ISBN: 0821843745
Category : Mathematics
Languages : en
Pages : 422
Book Description
The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.
Publisher: American Mathematical Soc.
ISBN: 0821843745
Category : Mathematics
Languages : en
Pages : 422
Book Description
The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.
Representations and Nilpotent Orbits of Lie Algebraic Systems
Author: Maria Gorelik
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563
Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563
Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
Noncompact Semisimple Lie Algebras and Groups
Author: Vladimir K. Dobrev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311042780X
Category : Mathematics
Languages : en
Pages : 511
Book Description
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan–Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311042780X
Category : Mathematics
Languages : en
Pages : 511
Book Description
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan–Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
Algebras, Rings and Modules
Author: Michiel Hazewinkel
Publisher: American Mathematical Soc.
ISBN: 0821852620
Category : Mathematics
Languages : en
Pages : 425
Book Description
Presenting an introduction to the theory of Hopf algebras, the authors also discuss some important aspects of the theory of Lie algebras. This book includes a chapters on the Hopf algebra of symmetric functions, the Hopf algebra of representations of the symmetric groups, the Hopf algebras of the nonsymmetric and quasisymmetric functions, and the Hopf algebra of permutations.
Publisher: American Mathematical Soc.
ISBN: 0821852620
Category : Mathematics
Languages : en
Pages : 425
Book Description
Presenting an introduction to the theory of Hopf algebras, the authors also discuss some important aspects of the theory of Lie algebras. This book includes a chapters on the Hopf algebra of symmetric functions, the Hopf algebra of representations of the symmetric groups, the Hopf algebras of the nonsymmetric and quasisymmetric functions, and the Hopf algebra of permutations.
Quantum Groups
Author: Petr P. Kulish
Publisher: Springer
ISBN: 3540470204
Category : Mathematics
Languages : en
Pages : 407
Book Description
The theory of Quantum Groups is a rapidly developing area with numerous applications in mathematics and theoretical physics, e.g. in link and knot invariants in topology, q-special functions, conformal field theory, quantum integrable models. The aim of the Euler Institute's workshops was to review and compile the progress achieved in the different subfields. Near 100 participants came from 14 countries. More than 20 contributions written up for this book contain new, unpublished material and half of them include a survey of recent results in the field (deformation theory, graded differential algebras, contraction technique, knot invariants, q-special functions). FROM THE CONTENTS: V.G. Drinfeld: On Some Unsolved Problems in Quantum Group Theory.- M. Gerstenhaber, A. Giaquinto, S.D. Schack: Quantum Symmetry.- L.I. Korogodsky,L.L. Vaksman: Quantum G-Spaces and Heisenberg Algebra.-J. Stasheff: Differential Graded Lie Algebras, Quasi-Hopf Algebras and Higher Homotopy Algebras.- A.Yu. Alekseev, L.D. Faddeev, M.A. Semenov-Tian-Shansky: Hidden Quantum Groups inside Kac-Moody Algebras.- J.-L. Gervais: Quantum Group Symmetry of 2D Gravity.- T. Kohno: Invariants of 3-Manifolds Based on Conformal Field Theory and Heegaard Splitting.- O. Viro: Moves of Triangulations of a PL-Manifold.
Publisher: Springer
ISBN: 3540470204
Category : Mathematics
Languages : en
Pages : 407
Book Description
The theory of Quantum Groups is a rapidly developing area with numerous applications in mathematics and theoretical physics, e.g. in link and knot invariants in topology, q-special functions, conformal field theory, quantum integrable models. The aim of the Euler Institute's workshops was to review and compile the progress achieved in the different subfields. Near 100 participants came from 14 countries. More than 20 contributions written up for this book contain new, unpublished material and half of them include a survey of recent results in the field (deformation theory, graded differential algebras, contraction technique, knot invariants, q-special functions). FROM THE CONTENTS: V.G. Drinfeld: On Some Unsolved Problems in Quantum Group Theory.- M. Gerstenhaber, A. Giaquinto, S.D. Schack: Quantum Symmetry.- L.I. Korogodsky,L.L. Vaksman: Quantum G-Spaces and Heisenberg Algebra.-J. Stasheff: Differential Graded Lie Algebras, Quasi-Hopf Algebras and Higher Homotopy Algebras.- A.Yu. Alekseev, L.D. Faddeev, M.A. Semenov-Tian-Shansky: Hidden Quantum Groups inside Kac-Moody Algebras.- J.-L. Gervais: Quantum Group Symmetry of 2D Gravity.- T. Kohno: Invariants of 3-Manifolds Based on Conformal Field Theory and Heegaard Splitting.- O. Viro: Moves of Triangulations of a PL-Manifold.
Quantum Groups
Author: Vladimir K. Dobrev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427788
Category : Science
Languages : en
Pages : 450
Book Description
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427788
Category : Science
Languages : en
Pages : 450
Book Description
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications
Author: Yun Gao
Publisher: American Mathematical Soc.
ISBN: 0821845071
Category : Mathematics
Languages : en
Pages : 314
Book Description
This volume contains the proceedings of the conference on Quantum Affine Algebras, Extended Affine Lie Algebras, and Applications, which was held at the Banff International Research Station, Banff, Canada, from March 2-7, 2008. Many of the papers include new results on different aspects of quantum affine algebras, extended affine Lie algebras, and their applications in other areas of mathematics and physics. Any reader interested in learning about the recent developments in quantum affine algebras and extended affine Lie algebras will benefit from this book.
Publisher: American Mathematical Soc.
ISBN: 0821845071
Category : Mathematics
Languages : en
Pages : 314
Book Description
This volume contains the proceedings of the conference on Quantum Affine Algebras, Extended Affine Lie Algebras, and Applications, which was held at the Banff International Research Station, Banff, Canada, from March 2-7, 2008. Many of the papers include new results on different aspects of quantum affine algebras, extended affine Lie algebras, and their applications in other areas of mathematics and physics. Any reader interested in learning about the recent developments in quantum affine algebras and extended affine Lie algebras will benefit from this book.
Representations of Shifted Yangians and Finite $W$-algebras
Author: Jonathan Brundan
Publisher: American Mathematical Soc.
ISBN: 0821842161
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors study highest weight representations of shifted Yangians over an algebraically closed field of characteristic $0$. In particular, they classify the finite dimensional irreducible representations and explain how to compute their Gelfand-Tsetlin characters in terms of known characters of standard modules and certain Kazhdan-Lusztig polynomials. The authors' approach exploits the relationship between shifted Yangians and the finite W-algebras associated to nilpotent orbits in general linear Lie algebras.
Publisher: American Mathematical Soc.
ISBN: 0821842161
Category : Mathematics
Languages : en
Pages : 122
Book Description
The authors study highest weight representations of shifted Yangians over an algebraically closed field of characteristic $0$. In particular, they classify the finite dimensional irreducible representations and explain how to compute their Gelfand-Tsetlin characters in terms of known characters of standard modules and certain Kazhdan-Lusztig polynomials. The authors' approach exploits the relationship between shifted Yangians and the finite W-algebras associated to nilpotent orbits in general linear Lie algebras.
Compact Lie Groups and Their Representations
Author: Dmitriĭ Petrovich Zhelobenko
Publisher: American Mathematical Soc.
ISBN: 9780821886649
Category : Mathematics
Languages : en
Pages : 464
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886649
Category : Mathematics
Languages : en
Pages : 464
Book Description
Sugawara Operators for Classical Lie Algebras
Author: Alexander Molev:
Publisher: American Mathematical Soc.
ISBN: 1470436590
Category : Mathematics
Languages : en
Pages : 321
Book Description
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.
Publisher: American Mathematical Soc.
ISBN: 1470436590
Category : Mathematics
Languages : en
Pages : 321
Book Description
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.