Author: Hans Stadtherr
Publisher: Herbert Utz Verlag
ISBN: 9783896753069
Category :
Languages : en
Pages : 224
Book Description
Work Efficient Parallel Scheduling Algorithms
Author: Hans Stadtherr
Publisher: Herbert Utz Verlag
ISBN: 9783896753069
Category :
Languages : en
Pages : 224
Book Description
Publisher: Herbert Utz Verlag
ISBN: 9783896753069
Category :
Languages : en
Pages : 224
Book Description
Topics in Parallel and Distributed Computing
Author: Sushil K Prasad
Publisher: Morgan Kaufmann
ISBN: 0128039388
Category : Computers
Languages : en
Pages : 359
Book Description
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Publisher: Morgan Kaufmann
ISBN: 0128039388
Category : Computers
Languages : en
Pages : 359
Book Description
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
International Conference on Advanced Computing Networking and Informatics
Author: Raj Kamal
Publisher: Springer
ISBN: 9811326738
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The book comprises selected papers presented at the International Conference on Advanced Computing, Networking and Informatics (ICANI 2018), organized by Medi-Caps University, India. It includes novel and original research work on advanced computing, networking and informatics, and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques in the field of computing and networking.
Publisher: Springer
ISBN: 9811326738
Category : Technology & Engineering
Languages : en
Pages : 544
Book Description
The book comprises selected papers presented at the International Conference on Advanced Computing, Networking and Informatics (ICANI 2018), organized by Medi-Caps University, India. It includes novel and original research work on advanced computing, networking and informatics, and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques in the field of computing and networking.
Parallel Programming Using C++
Author: Gregory V. Wilson
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Partitioning and Scheduling Parallel Programs for Multiprocessors
Author: Vivek Sarkar
Publisher: Pitman Publishing
ISBN:
Category : Computers
Languages : en
Pages : 232
Book Description
This book is one of the first to address the problem of forming useful parallelism from potential parallelism and to provide a general solution. The book presents two approaches to automatic partitioning and scheduling so that the same parallel program can be made to execute efficiently on widely different multiprocessors. The first approach is based on a macro dataflow model in which the program is partitioned into tasks at compile time and the tasks are scheduled on processors at run time. The second approach is based on a compile time scheduling model, where both the partitioning and scheduling are performed at compile time. Both approaches have been implemented in partition programs written in the single assignment language SISAL. The inputs to the partitioning and scheduling algorithms are a graphical representation of the parallel program and a list of parameters describing the target multiprocessor. Execution profile information is used to derive compile-time estimates of execution times and data sizes in the program. Both the macro dataflow and compile-time scheduling problems are expressed as optimization problems and are shown to be NP complete in the strong sense. Efficient approximation algorithms for these problems are presented. Finally, the effectiveness of the partitioning and scheduling algorithms is studied by multiprocessor simulations of various SISAL benchmark programs for different target multiprocessor parameters. Vivek Sarkar is a Member of Research Staff at the IBM T. J. Watson Research Center. Partitioning and Scheduling Parallel Programs for Multiprocessing is included in the series Research Monographs in Parallel and Distributed Computing. Copublished with Pitman Publishing.
Publisher: Pitman Publishing
ISBN:
Category : Computers
Languages : en
Pages : 232
Book Description
This book is one of the first to address the problem of forming useful parallelism from potential parallelism and to provide a general solution. The book presents two approaches to automatic partitioning and scheduling so that the same parallel program can be made to execute efficiently on widely different multiprocessors. The first approach is based on a macro dataflow model in which the program is partitioned into tasks at compile time and the tasks are scheduled on processors at run time. The second approach is based on a compile time scheduling model, where both the partitioning and scheduling are performed at compile time. Both approaches have been implemented in partition programs written in the single assignment language SISAL. The inputs to the partitioning and scheduling algorithms are a graphical representation of the parallel program and a list of parameters describing the target multiprocessor. Execution profile information is used to derive compile-time estimates of execution times and data sizes in the program. Both the macro dataflow and compile-time scheduling problems are expressed as optimization problems and are shown to be NP complete in the strong sense. Efficient approximation algorithms for these problems are presented. Finally, the effectiveness of the partitioning and scheduling algorithms is studied by multiprocessor simulations of various SISAL benchmark programs for different target multiprocessor parameters. Vivek Sarkar is a Member of Research Staff at the IBM T. J. Watson Research Center. Partitioning and Scheduling Parallel Programs for Multiprocessing is included in the series Research Monographs in Parallel and Distributed Computing. Copublished with Pitman Publishing.
Scheduling for Parallel Processing
Author: Maciej Drozdowski
Publisher: Springer Science & Business Media
ISBN: 184882310X
Category : Computers
Languages : en
Pages : 395
Book Description
Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships.
Publisher: Springer Science & Business Media
ISBN: 184882310X
Category : Computers
Languages : en
Pages : 395
Book Description
Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships.
Advances in Electronics, Communication and Computing
Author: Akhtar Kalam
Publisher: Springer
ISBN: 9811047650
Category : Technology & Engineering
Languages : en
Pages : 808
Book Description
This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.
Publisher: Springer
ISBN: 9811047650
Category : Technology & Engineering
Languages : en
Pages : 808
Book Description
This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.
Parallel Algorithms
Author: Henri Casanova
Publisher: CRC Press
ISBN: 1584889462
Category : Computers
Languages : en
Pages : 360
Book Description
Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract
Publisher: CRC Press
ISBN: 1584889462
Category : Computers
Languages : en
Pages : 360
Book Description
Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
并行程序设计
Author: Foster
Publisher:
ISBN: 9787115103475
Category : Computer programming
Languages : zh-CN
Pages : 381
Book Description
国外著名高等院校信息科学与技术优秀教材
Publisher:
ISBN: 9787115103475
Category : Computer programming
Languages : zh-CN
Pages : 381
Book Description
国外著名高等院校信息科学与技术优秀教材