Author: Manfred Stiebler
Publisher: Springer Science & Business Media
ISBN: 3540687653
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
Among renewable sources wind power systems have developed to prominent s- pliers of electrical energy. Since the 1980s they have seen an exponential increase, both in unit power ratings and overall capacity. While most of the systems are found on dry land, preferably in coastal regions, off-shore wind parks are expected to add signi?cantly to wind energy conversion in the future. The theory of modern wind turbines has not been established before the 20th century. Currently wind turbines with three blades and horizontal shaft prevail. The drivenelectricgeneratorsareoftheasynchronousorsynchronoustype,withorwi- out interposed gearbox. Modern systems are designed for variable speed operation which make power electronic devices play an important part in wind energy conv- sion. Manufacturing has reached the state of a high-tech industry. Countries prominent for the amount of installed wind turbine systems feeding into the grid are in Europe Denmark, Germany and Spain. Outside Europe it is the United States of America and India who stand out with large rates of increase. The market and the degree of contribution to the energy consumption in a country has been strongly in?uenced by National support schemes, such as guaranteed feed-in tariffs or tax credits. Due to the personal background of the author, the view is mainly directed on Europe, and many examples are taken from the German scene. However, the sit- tion in other continents, especially North America and Asia is also considered.
Wind Energy Systems for Electric Power Generation
Author: Manfred Stiebler
Publisher: Springer Science & Business Media
ISBN: 3540687653
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
Among renewable sources wind power systems have developed to prominent s- pliers of electrical energy. Since the 1980s they have seen an exponential increase, both in unit power ratings and overall capacity. While most of the systems are found on dry land, preferably in coastal regions, off-shore wind parks are expected to add signi?cantly to wind energy conversion in the future. The theory of modern wind turbines has not been established before the 20th century. Currently wind turbines with three blades and horizontal shaft prevail. The drivenelectricgeneratorsareoftheasynchronousorsynchronoustype,withorwi- out interposed gearbox. Modern systems are designed for variable speed operation which make power electronic devices play an important part in wind energy conv- sion. Manufacturing has reached the state of a high-tech industry. Countries prominent for the amount of installed wind turbine systems feeding into the grid are in Europe Denmark, Germany and Spain. Outside Europe it is the United States of America and India who stand out with large rates of increase. The market and the degree of contribution to the energy consumption in a country has been strongly in?uenced by National support schemes, such as guaranteed feed-in tariffs or tax credits. Due to the personal background of the author, the view is mainly directed on Europe, and many examples are taken from the German scene. However, the sit- tion in other continents, especially North America and Asia is also considered.
Publisher: Springer Science & Business Media
ISBN: 3540687653
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
Among renewable sources wind power systems have developed to prominent s- pliers of electrical energy. Since the 1980s they have seen an exponential increase, both in unit power ratings and overall capacity. While most of the systems are found on dry land, preferably in coastal regions, off-shore wind parks are expected to add signi?cantly to wind energy conversion in the future. The theory of modern wind turbines has not been established before the 20th century. Currently wind turbines with three blades and horizontal shaft prevail. The drivenelectricgeneratorsareoftheasynchronousorsynchronoustype,withorwi- out interposed gearbox. Modern systems are designed for variable speed operation which make power electronic devices play an important part in wind energy conv- sion. Manufacturing has reached the state of a high-tech industry. Countries prominent for the amount of installed wind turbine systems feeding into the grid are in Europe Denmark, Germany and Spain. Outside Europe it is the United States of America and India who stand out with large rates of increase. The market and the degree of contribution to the energy consumption in a country has been strongly in?uenced by National support schemes, such as guaranteed feed-in tariffs or tax credits. Due to the personal background of the author, the view is mainly directed on Europe, and many examples are taken from the German scene. However, the sit- tion in other continents, especially North America and Asia is also considered.
Electricity Generation Using Wind Power (Second Edition)
Author: William Shepherd
Publisher: World Scientific
ISBN: 9813148675
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Is wind power the answer to our energy supply problems? Is there enough wind for everyone? Is offshore generation better than onshore generation? Can a roof-mounted wind turbine generate enough electricity to supply a typical domestic household?Electricity Generation Using Wind Power (2nd Edition) answers these pressing questions through its detailed coverage of the different types of electrical generator machines used, as well as the power electronic converter technologies and control principles employed. Also covered is the integration of wind farms into established electricity grid systems, plus environmental and economic aspects of wind generation.Written for technically minded readers, especially electrical engineers concerned with the possible use of wind power for generating electricity, it incorporates some global meteorological and geographical features of wind supply plus a survey of past and present wind turbines. Included is a technical assessment of the choice of turbine sites. The principles and analysis of wind power conversion, transmission and efficiency evaluation are described.This book includes worked numerical examples in some chapters, plus end of chapter problems and review questions, with answers. As a textbook it is pitched at the level of final year undergraduate engineering study but may also be useful as a textbook or reference for wider technical studies.
Publisher: World Scientific
ISBN: 9813148675
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Is wind power the answer to our energy supply problems? Is there enough wind for everyone? Is offshore generation better than onshore generation? Can a roof-mounted wind turbine generate enough electricity to supply a typical domestic household?Electricity Generation Using Wind Power (2nd Edition) answers these pressing questions through its detailed coverage of the different types of electrical generator machines used, as well as the power electronic converter technologies and control principles employed. Also covered is the integration of wind farms into established electricity grid systems, plus environmental and economic aspects of wind generation.Written for technically minded readers, especially electrical engineers concerned with the possible use of wind power for generating electricity, it incorporates some global meteorological and geographical features of wind supply plus a survey of past and present wind turbines. Included is a technical assessment of the choice of turbine sites. The principles and analysis of wind power conversion, transmission and efficiency evaluation are described.This book includes worked numerical examples in some chapters, plus end of chapter problems and review questions, with answers. As a textbook it is pitched at the level of final year undergraduate engineering study but may also be useful as a textbook or reference for wider technical studies.
Electric Renewable Energy Systems
Author: Muhammad H. Rashid
Publisher: Academic Press
ISBN: 0128006366
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
Publisher: Academic Press
ISBN: 0128006366
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
Wind Power Generation
Author: Paul Breeze
Publisher: Academic Press
ISBN: 0128051922
Category : Technology & Engineering
Languages : en
Pages : 105
Book Description
Wind Power Generation is a concise, up-to-date and readable guide providing an introduction to one of the leading renewable power generation technologies. It includes detailed descriptions of on and offshore generation systems, and demystifies the relevant wind energy technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. - Focuses on the evolution and developments in wind energy generation - Evaluates the economic and environmental viability of the systems with concise diagrams and accessible explanations
Publisher: Academic Press
ISBN: 0128051922
Category : Technology & Engineering
Languages : en
Pages : 105
Book Description
Wind Power Generation is a concise, up-to-date and readable guide providing an introduction to one of the leading renewable power generation technologies. It includes detailed descriptions of on and offshore generation systems, and demystifies the relevant wind energy technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. - Focuses on the evolution and developments in wind energy generation - Evaluates the economic and environmental viability of the systems with concise diagrams and accessible explanations
Power Conversion and Control of Wind Energy Systems
Author: Bin Wu
Publisher: John Wiley & Sons
ISBN: 0470593652
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
Publisher: John Wiley & Sons
ISBN: 0470593652
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
DC Wind Generation Systems
Author: Omid Beik
Publisher: Springer Nature
ISBN: 3030393461
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book presents the design and operation of DC wind systems and their integration into power grids. The chapters give an in-depth discussion on turbine conversion systems that have been adapted for DC grids and address characteristics of wind turbines when converting kinetic wind energy to electrical energy, components associated with DC systems, and the design and analysis of DC grids. Additionally, the performance of medium voltage DC (MVDC) array grid and high voltage DC (HVDC) transmission grid connected via an offshore substation with DC/DC converters are also addressed. The book examines multiphase hybrid excitation generator systems for wind turbines and discusses its design and operation for all DC systems. The book provides an insight into the state-of-the-art technological advancements for existing and futuristic wind generation schemes, and provides materials that will allow students, researchers, academics, and practicing engineers to learn, expand and complement their expertise.
Publisher: Springer Nature
ISBN: 3030393461
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book presents the design and operation of DC wind systems and their integration into power grids. The chapters give an in-depth discussion on turbine conversion systems that have been adapted for DC grids and address characteristics of wind turbines when converting kinetic wind energy to electrical energy, components associated with DC systems, and the design and analysis of DC grids. Additionally, the performance of medium voltage DC (MVDC) array grid and high voltage DC (HVDC) transmission grid connected via an offshore substation with DC/DC converters are also addressed. The book examines multiphase hybrid excitation generator systems for wind turbines and discusses its design and operation for all DC systems. The book provides an insight into the state-of-the-art technological advancements for existing and futuristic wind generation schemes, and provides materials that will allow students, researchers, academics, and practicing engineers to learn, expand and complement their expertise.
Airborne Wind Energy
Author: Roland Schmehl
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.
Wind Turbine Operation in Electric Power Systems
Author: Zbigniew Lubosny
Publisher: Springer
ISBN: 9783642073175
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
A comprehensive approach to Wind Turbine Generator Systems (WTGS) and their operation in dynamic electric power system analysis. The presented advanced models arose from the author's research. They describe the complicated dynamical system behavior of wind turbines much better than the over-simplified static models. In particular, the control structure is taken into account. This book provides advanced tools for design, projection and optimization of turbines and systems that have yet not been available.
Publisher: Springer
ISBN: 9783642073175
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
A comprehensive approach to Wind Turbine Generator Systems (WTGS) and their operation in dynamic electric power system analysis. The presented advanced models arose from the author's research. They describe the complicated dynamical system behavior of wind turbines much better than the over-simplified static models. In particular, the control structure is taken into account. This book provides advanced tools for design, projection and optimization of turbines and systems that have yet not been available.
Wind Energy Explained
Author: James F. Manwell
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Publisher: John Wiley & Sons
ISBN: 9780470686287
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)
Advanced Power Generation Systems
Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0123838614
Category : Technology & Engineering
Languages : en
Pages : 657
Book Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Publisher: Academic Press
ISBN: 0123838614
Category : Technology & Engineering
Languages : en
Pages : 657
Book Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice