Author: N. Stuifbergen
Publisher:
ISBN:
Category : Map projection
Languages : en
Pages : 60
Book Description
A description is provided of the conversions of geodetic latitude and longitude into transverse Mercator grid co-ordinates, and vice-versa, for coverage of wide extent, with sub-millimetre accuracy tested up to 80 degrees from the central meridian. (160-degree zone-width). It is useful as a tool to evaluate existing algorithms based on Taylor series expansions, which begin to degrade beyond the standard 6-degree zone-width of UTM. Mathematical formulae with derivations, numerical examples and Fortran code are included.
Wide Zone Transverse Mercator Projection
Author: N. Stuifbergen
Publisher:
ISBN:
Category : Map projection
Languages : en
Pages : 60
Book Description
A description is provided of the conversions of geodetic latitude and longitude into transverse Mercator grid co-ordinates, and vice-versa, for coverage of wide extent, with sub-millimetre accuracy tested up to 80 degrees from the central meridian. (160-degree zone-width). It is useful as a tool to evaluate existing algorithms based on Taylor series expansions, which begin to degrade beyond the standard 6-degree zone-width of UTM. Mathematical formulae with derivations, numerical examples and Fortran code are included.
Publisher:
ISBN:
Category : Map projection
Languages : en
Pages : 60
Book Description
A description is provided of the conversions of geodetic latitude and longitude into transverse Mercator grid co-ordinates, and vice-versa, for coverage of wide extent, with sub-millimetre accuracy tested up to 80 degrees from the central meridian. (160-degree zone-width). It is useful as a tool to evaluate existing algorithms based on Taylor series expansions, which begin to degrade beyond the standard 6-degree zone-width of UTM. Mathematical formulae with derivations, numerical examples and Fortran code are included.
State Plane Coordinate System of 1983
Author: James E. Stem
Publisher:
ISBN:
Category : Conformal mapping
Languages : en
Pages : 132
Book Description
Publisher:
ISBN:
Category : Conformal mapping
Languages : en
Pages : 132
Book Description
State Plane Coordinate System of 1983
Author: James E. Stem
Publisher:
ISBN:
Category : Nets (Geodesy)
Languages : en
Pages : 132
Book Description
Publisher:
ISBN:
Category : Nets (Geodesy)
Languages : en
Pages : 132
Book Description
Map Projections
Author: L M Bugayevskiy
Publisher: CRC Press
ISBN: 1482248034
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Map projection concerns the science of mathematical cartography, the techniques by which the Earth's dimensions, shape and features are translated in map form, be that two-dimensional paper or two- or three- dimensional electronic representations. The central focus of this book is on the theory of map projections. Mathematical cartography also take
Publisher: CRC Press
ISBN: 1482248034
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Map projection concerns the science of mathematical cartography, the techniques by which the Earth's dimensions, shape and features are translated in map form, be that two-dimensional paper or two- or three- dimensional electronic representations. The central focus of this book is on the theory of map projections. Mathematical cartography also take
Geocomputation with R
Author: Robin Lovelace
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 354
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 354
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.
Adjustment Computations
Author: Charles D. Ghilani
Publisher: John Wiley & Sons
ISBN: 1119390311
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
The definitive guide to bringing accuracy to measurement, updated and supplemented Adjustment Computations is the classic textbook for spatial information analysis and adjustment computations, providing clear, easy-to-understand instruction backed by real-world practicality. From the basic terms and fundamentals of errors to specific adjustment computations and spatial information analysis, this book covers the methodologies and tools that bring accuracy to surveying, GNSS, GIS, and other spatial technologies. Broad in scope yet rich in detail, the discussion avoids overly-complex theory in favor of practical techniques for students and professionals. This new sixth edition has been updated to align with the latest developments in this rapidly expanding field, and includes new video lessons and updated problems, including worked problems in STATS, MATRIX, ADJUST, and MathCAD. All measurement produces some amount of error; whether from human mistakes, instrumentation inaccuracy, or environmental features, these errors must be accounted and adjusted for when accuracy is critical. This book describes how errors are identified, analyzed, measured, and corrected, with a focus on least squares adjustment—the most rigorous methodology available. Apply industry-standard methodologies to error analysis and adjustment Translate your skills to the real-world with instruction focused on the practical Master the fundamentals as well as specific computations and analysis Strengthen your understanding of critical topics on the Fundamentals in Surveying Licensing Exam As spatial technologies expand in both use and capability, so does our need for professionals who understand how to check and adjust for errors in spatial data. Conceptual knowledge is one thing, but practical skills are what counts when accuracy is at stake; Adjustment Computations provides the real-world training you need to identify, analyze, and correct for potentially crucial errors.
Publisher: John Wiley & Sons
ISBN: 1119390311
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
The definitive guide to bringing accuracy to measurement, updated and supplemented Adjustment Computations is the classic textbook for spatial information analysis and adjustment computations, providing clear, easy-to-understand instruction backed by real-world practicality. From the basic terms and fundamentals of errors to specific adjustment computations and spatial information analysis, this book covers the methodologies and tools that bring accuracy to surveying, GNSS, GIS, and other spatial technologies. Broad in scope yet rich in detail, the discussion avoids overly-complex theory in favor of practical techniques for students and professionals. This new sixth edition has been updated to align with the latest developments in this rapidly expanding field, and includes new video lessons and updated problems, including worked problems in STATS, MATRIX, ADJUST, and MathCAD. All measurement produces some amount of error; whether from human mistakes, instrumentation inaccuracy, or environmental features, these errors must be accounted and adjusted for when accuracy is critical. This book describes how errors are identified, analyzed, measured, and corrected, with a focus on least squares adjustment—the most rigorous methodology available. Apply industry-standard methodologies to error analysis and adjustment Translate your skills to the real-world with instruction focused on the practical Master the fundamentals as well as specific computations and analysis Strengthen your understanding of critical topics on the Fundamentals in Surveying Licensing Exam As spatial technologies expand in both use and capability, so does our need for professionals who understand how to check and adjust for errors in spatial data. Conceptual knowledge is one thing, but practical skills are what counts when accuracy is at stake; Adjustment Computations provides the real-world training you need to identify, analyze, and correct for potentially crucial errors.
Understanding Map Projections
Author: Melita Kennedy
Publisher: ESRI Press
ISBN:
Category : Science
Languages : en
Pages : 118
Book Description
Publisher: ESRI Press
ISBN:
Category : Science
Languages : en
Pages : 118
Book Description
Map Projections
Author: Erik W. Grafarend
Publisher: Springer
ISBN: 3642364942
Category : Science
Languages : en
Pages : 941
Book Description
In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.
Publisher: Springer
ISBN: 3642364942
Category : Science
Languages : en
Pages : 941
Book Description
In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.
Coordinate Systems and Map Projections
Author: D.H. Maling
Publisher: Elsevier
ISBN: 1483287076
Category : Science
Languages : en
Pages : 505
Book Description
A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic projections is also covered. Work undertaken in the USA and USSR on the creation of suitable map projections obtained through numerical analysis has been included. The book concludes with a chapter on the abuse and misrepresentation of map projections. An invaluable reference source for professional cartographers and all those interested in the fundamental problems of mapping the Earth.
Publisher: Elsevier
ISBN: 1483287076
Category : Science
Languages : en
Pages : 505
Book Description
A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic projections is also covered. Work undertaken in the USA and USSR on the creation of suitable map projections obtained through numerical analysis has been included. The book concludes with a chapter on the abuse and misrepresentation of map projections. An invaluable reference source for professional cartographers and all those interested in the fundamental problems of mapping the Earth.
An Introduction to Spatial Data Analysis
Author: Martin Wegmann
Publisher: Pelagic Publishing Ltd
ISBN: 1784272140
Category : Science
Languages : en
Pages : 372
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts
Publisher: Pelagic Publishing Ltd
ISBN: 1784272140
Category : Science
Languages : en
Pages : 372
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts