Author: Weng Cho Chew
Publisher: Oxford University Press, USA
ISBN: 9780198592242
Category : Electromagnetic fields
Languages : en
Pages : 608
Book Description
Van Nostrand Reinhold 1990. Reissued by IEEE Press 1994
Waves and Fields in Inhomogeneous Media
Author: Weng Cho Chew
Publisher: Oxford University Press, USA
ISBN: 9780198592242
Category : Electromagnetic fields
Languages : en
Pages : 608
Book Description
Van Nostrand Reinhold 1990. Reissued by IEEE Press 1994
Publisher: Oxford University Press, USA
ISBN: 9780198592242
Category : Electromagnetic fields
Languages : en
Pages : 608
Book Description
Van Nostrand Reinhold 1990. Reissued by IEEE Press 1994
Waves and Fields in Inhomogeneous Media
Author: Weng Cho Chew
Publisher: IEEE Computer Society Press
ISBN:
Category : Science
Languages : en
Pages : 642
Book Description
Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.
Publisher: IEEE Computer Society Press
ISBN:
Category : Science
Languages : en
Pages : 642
Book Description
Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.
Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Surface Acoustic Waves in Inhomogeneous Media
Author: Sergey V. Biryukov
Publisher: Springer Science & Business Media
ISBN: 3642577679
Category : Science
Languages : en
Pages : 398
Book Description
Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.
Publisher: Springer Science & Business Media
ISBN: 3642577679
Category : Science
Languages : en
Pages : 398
Book Description
Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.
Wave Propagation in a Random Medium
Author: Lev A. Chernov
Publisher: Courier Dover Publications
ISBN: 0486821471
Category : Science
Languages : en
Pages : 179
Book Description
Ground-breaking contribution to the literature, widely used by scientists, engineers, and students. Topics include theory of wave propagation in randomly inhomogeneous media, ray and wave theories of scattering at random inhomogeneities, more. 1960 edition.
Publisher: Courier Dover Publications
ISBN: 0486821471
Category : Science
Languages : en
Pages : 179
Book Description
Ground-breaking contribution to the literature, widely used by scientists, engineers, and students. Topics include theory of wave propagation in randomly inhomogeneous media, ray and wave theories of scattering at random inhomogeneities, more. 1960 edition.
Electromagnetic Wave Propagation, Radiation, and Scattering
Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Publisher: John Wiley & Sons
ISBN: 1119079535
Category : Science
Languages : en
Pages : 1045
Book Description
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Mathematical Foundations for Electromagnetic Theory
Author: Donald G. Dudley
Publisher: Wiley-IEEE Press
ISBN: 9780780310223
Category : Science
Languages : en
Pages : 264
Book Description
Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.
Publisher: Wiley-IEEE Press
ISBN: 9780780310223
Category : Science
Languages : en
Pages : 264
Book Description
Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.
Electromagnetic Waves in Stratified Media
Author: James R. Wait
Publisher: Elsevier
ISBN: 1483184250
Category : Science
Languages : en
Pages : 621
Book Description
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers.
Publisher: Elsevier
ISBN: 1483184250
Category : Science
Languages : en
Pages : 621
Book Description
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers.
Inhomogeneous Waves in Solids and Fluids
Author: Giacomo Caviglia
Publisher: World Scientific
ISBN: 9789810208042
Category : Science
Languages : en
Pages : 328
Book Description
The book may be viewed as an introduction to time-harmonic waves in dissipative bodies, notably viscoelastic solids and fluids. The inhomogeneity of the waves, which is due to the fact that planes of constant phase are not parallel to planes of constant amplitude, is shown to be strictly related to the dissipativity of the medium. A preliminary analysis is performed on the propagation of inhomogeneous waves in unbounded media and of reflection and refraction at plane interfaces. Then emphasis is given to those features that are of significance for applications. In essence, they regard surface waves, scattering by (curved) obstacles, wave propagation in layered heterogeneous media, and ray methods. The pertinent mathematical techniques are discussed so as to make the book reasonably self-contained.
Publisher: World Scientific
ISBN: 9789810208042
Category : Science
Languages : en
Pages : 328
Book Description
The book may be viewed as an introduction to time-harmonic waves in dissipative bodies, notably viscoelastic solids and fluids. The inhomogeneity of the waves, which is due to the fact that planes of constant phase are not parallel to planes of constant amplitude, is shown to be strictly related to the dissipativity of the medium. A preliminary analysis is performed on the propagation of inhomogeneous waves in unbounded media and of reflection and refraction at plane interfaces. Then emphasis is given to those features that are of significance for applications. In essence, they regard surface waves, scattering by (curved) obstacles, wave propagation in layered heterogeneous media, and ray methods. The pertinent mathematical techniques are discussed so as to make the book reasonably self-contained.
The Plane Wave Spectrum Representation of Electromagnetic Fields
Author: P. C. Clemmow
Publisher: Oxford University Press, USA
ISBN:
Category : Science
Languages : en
Pages : 208
Book Description
Electrical Engineering/Electromagnetics The Plane Wave Spectrum Representation of Electromagnetic Fields A classic reissue in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor"I am pleased to see that the IEEE Press and OUP have secured the rights to republish this excellent monograph ... a long-cherished exposition on the angular spectrum concept."--James R. WaitThe purpose of this book is to explain how general electromagnetic fields can be represented by the superposition of plane waves traveling in diverse directions, and to illustrate the way in which this plane wave spectrum representation can be put to good use in treating various characteristic problems belonging to the classical theories of radiation, diffraction and propagation. The book offers a largely unified theory of a range of problems, solutions to all of which are obtained in forms at least patently capable of yielding numerical results by straightforward means. The reader is assumed to be competent at integration in the complex plane, but otherwise the discussion is virtually self-contained. The aim is to furnish the student of electromagnetic theory with a useful technical tool and a comparatively compact account of some interesting aspects of his discipline. The contents are presented in two parts. The first, under the heading of Theory, covers Preliminaries, Plane wave representations; and Supplementary theory. The second, with the heading Application, deals with Diffraction by a plane screen; Propagation over a uniform plane surface; Propagation over a two-part plane surface; The field of a moving point charge; and Sources of anisotropic media. Also in the series ... Field Computation by Moment Method An IEEE/OUP classic reissue R.F. Harrington, Syracuse University 1995, Hardcover, 240 pp. Waves and Fields in Inhomogeneous Media An IEEE/OUP classic reissue Weng Cho Chew, University of Illinois at Urbana-Champaign 1995, Hardcover, 632 pp. Methods in Electromagnetic Wave Propagation Second Edition D.S. Jones, University of Dundee 1994, Hardcover, 686 pp. About the seriesFormerly the IEEE Press Series on Electromagnetic Waves, this new joint series between IEEE Press and Oxford University Press offers even better coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level
Publisher: Oxford University Press, USA
ISBN:
Category : Science
Languages : en
Pages : 208
Book Description
Electrical Engineering/Electromagnetics The Plane Wave Spectrum Representation of Electromagnetic Fields A classic reissue in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor"I am pleased to see that the IEEE Press and OUP have secured the rights to republish this excellent monograph ... a long-cherished exposition on the angular spectrum concept."--James R. WaitThe purpose of this book is to explain how general electromagnetic fields can be represented by the superposition of plane waves traveling in diverse directions, and to illustrate the way in which this plane wave spectrum representation can be put to good use in treating various characteristic problems belonging to the classical theories of radiation, diffraction and propagation. The book offers a largely unified theory of a range of problems, solutions to all of which are obtained in forms at least patently capable of yielding numerical results by straightforward means. The reader is assumed to be competent at integration in the complex plane, but otherwise the discussion is virtually self-contained. The aim is to furnish the student of electromagnetic theory with a useful technical tool and a comparatively compact account of some interesting aspects of his discipline. The contents are presented in two parts. The first, under the heading of Theory, covers Preliminaries, Plane wave representations; and Supplementary theory. The second, with the heading Application, deals with Diffraction by a plane screen; Propagation over a uniform plane surface; Propagation over a two-part plane surface; The field of a moving point charge; and Sources of anisotropic media. Also in the series ... Field Computation by Moment Method An IEEE/OUP classic reissue R.F. Harrington, Syracuse University 1995, Hardcover, 240 pp. Waves and Fields in Inhomogeneous Media An IEEE/OUP classic reissue Weng Cho Chew, University of Illinois at Urbana-Champaign 1995, Hardcover, 632 pp. Methods in Electromagnetic Wave Propagation Second Edition D.S. Jones, University of Dundee 1994, Hardcover, 686 pp. About the seriesFormerly the IEEE Press Series on Electromagnetic Waves, this new joint series between IEEE Press and Oxford University Press offers even better coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level