Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461232848
Category : Science
Languages : en
Pages : 303
Book Description
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
Wave Propagation in Electromagnetic Media
Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461232848
Category : Science
Languages : en
Pages : 303
Book Description
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
Publisher: Springer Science & Business Media
ISBN: 1461232848
Category : Science
Languages : en
Pages : 303
Book Description
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
Fundamentals of Shock Wave Propagation in Solids
Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745696
Category : Science
Languages : en
Pages : 439
Book Description
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.
Publisher: Springer Science & Business Media
ISBN: 3540745696
Category : Science
Languages : en
Pages : 439
Book Description
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.
Wave Motion in Elastic Solids
Author: Karl F. Graff
Publisher: Courier Corporation
ISBN: 0486139573
Category : Science
Languages : en
Pages : 690
Book Description
Self-contained coverage of topics ranging from elementary theory of waves and vibrations in strings to three-dimensional theory of waves in thick plates. Over 100 problems.
Publisher: Courier Corporation
ISBN: 0486139573
Category : Science
Languages : en
Pages : 690
Book Description
Self-contained coverage of topics ranging from elementary theory of waves and vibrations in strings to three-dimensional theory of waves in thick plates. Over 100 problems.
Stress Waves in Solids
Author: Herbert Kolsky
Publisher: Courier Corporation
ISBN: 0486610985
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.
Publisher: Courier Corporation
ISBN: 0486610985
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
The most readable survey of the theoretical core of current knowledge available. The author gives a concise account of the classical theory necessary to an understanding of the subject and considers how this theory has been extended to solids.
Introduction to Wave Propagation in Nonlinear Fluids and Solids
Author: D. S. Drumheller
Publisher: Cambridge University Press
ISBN: 9780521587464
Category : Science
Languages : en
Pages : 546
Book Description
Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.
Publisher: Cambridge University Press
ISBN: 9780521587464
Category : Science
Languages : en
Pages : 546
Book Description
Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.
Elastic wave propagation in transversely isotropic media
Author: R.C. Payton
Publisher: Springer Science & Business Media
ISBN: 9789024728435
Category : Science
Languages : en
Pages : 214
Book Description
In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.
Publisher: Springer Science & Business Media
ISBN: 9789024728435
Category : Science
Languages : en
Pages : 214
Book Description
In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.
Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Acoustics of Solids
Author: Abraham I. Beltzer
Publisher: Springer Science & Business Media
ISBN: 3642833705
Category : Science
Languages : en
Pages : 245
Book Description
Technological developments in composite materials, non-destructive testing, and signal processing as well as biomedical applications, have stimulated wide-ranging engineering investigations of heterogeneous, anisotropic media and surface waves of different types. Wave propagation in solids is now of considerable importance in a variety of applications. The book presents many of the key results in this field and interprets them from a unified engineering viewpoint. The conceptual importance and relevance for applications were the prevailing criteria in selecting the topics. Included are body and surface waves in elastic, viscoelastic, and piezoelectric media and waveguides, with emphasis on the effects of inhomogeneity and anisotropy. The book differs in many aspects from the other monographs dealing with wave propagation in solids. It focuses on physically meaningful theoretical models, a broad spectrum of which is covered, and not on mathematical techniques. Some of the results, particularly those dealing with waves in composites, are given for the first time in the monographical literature. Both, exact and approximate approaches, are discussed. While the subject is advanced, the presentation is at an intermediate level of mathematical complexity, making understanding easier.
Publisher: Springer Science & Business Media
ISBN: 3642833705
Category : Science
Languages : en
Pages : 245
Book Description
Technological developments in composite materials, non-destructive testing, and signal processing as well as biomedical applications, have stimulated wide-ranging engineering investigations of heterogeneous, anisotropic media and surface waves of different types. Wave propagation in solids is now of considerable importance in a variety of applications. The book presents many of the key results in this field and interprets them from a unified engineering viewpoint. The conceptual importance and relevance for applications were the prevailing criteria in selecting the topics. Included are body and surface waves in elastic, viscoelastic, and piezoelectric media and waveguides, with emphasis on the effects of inhomogeneity and anisotropy. The book differs in many aspects from the other monographs dealing with wave propagation in solids. It focuses on physically meaningful theoretical models, a broad spectrum of which is covered, and not on mathematical techniques. Some of the results, particularly those dealing with waves in composites, are given for the first time in the monographical literature. Both, exact and approximate approaches, are discussed. While the subject is advanced, the presentation is at an intermediate level of mathematical complexity, making understanding easier.
Elastic Waves in Solids
Author: E. Dieulesaint
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
Mathematics of Wave Propagation
Author: Julian L. Davis
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.