Author: Serban Stratila
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486
Book Description
Lectures on Von Neumann Algebras
Author: Serban Stratila
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486
Book Description
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 486
Book Description
Operator Algebras
Author: Bruce Blackadar
Publisher: Springer Science & Business Media
ISBN: 3540285172
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Publisher: Springer Science & Business Media
ISBN: 3540285172
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
An Invitation to von Neumann Algebras
Author: V.S. Sunder
Publisher: Springer Science & Business Media
ISBN: 1461386691
Category : Mathematics
Languages : en
Pages : 184
Book Description
Why This Book: The theory of von Neumann algebras has been growing in leaps and bounds in the last 20 years. It has always had strong connections with ergodic theory and mathematical physics. It is now beginning to make contact with other areas such as differential geometry and K-Theory. There seems to be a strong case for putting together a book which (a) introduces a reader to some of the basic theory needed to appreciate the recent advances, without getting bogged down by too much technical detail; (b) makes minimal assumptions on the reader's background; and (c) is small enough in size to not test the stamina and patience of the reader. This book tries to meet these requirements. In any case, it is just what its title proclaims it to be -- an invitation to the exciting world of von Neumann algebras. It is hoped that after perusing this book, the reader might be tempted to fill in the numerous (and technically, capacious) gaps in this exposition, and to delve further into the depths of the theory. For the expert, it suffices to mention here that after some preliminaries, the book commences with the Murray - von Neumann classification of factors, proceeds through the basic modular theory to the III). classification of Connes, and concludes with a discussion of crossed-products, Krieger's ratio set, examples of factors, and Takesaki's duality theorem.
Publisher: Springer Science & Business Media
ISBN: 1461386691
Category : Mathematics
Languages : en
Pages : 184
Book Description
Why This Book: The theory of von Neumann algebras has been growing in leaps and bounds in the last 20 years. It has always had strong connections with ergodic theory and mathematical physics. It is now beginning to make contact with other areas such as differential geometry and K-Theory. There seems to be a strong case for putting together a book which (a) introduces a reader to some of the basic theory needed to appreciate the recent advances, without getting bogged down by too much technical detail; (b) makes minimal assumptions on the reader's background; and (c) is small enough in size to not test the stamina and patience of the reader. This book tries to meet these requirements. In any case, it is just what its title proclaims it to be -- an invitation to the exciting world of von Neumann algebras. It is hoped that after perusing this book, the reader might be tempted to fill in the numerous (and technically, capacious) gaps in this exposition, and to delve further into the depths of the theory. For the expert, it suffices to mention here that after some preliminaries, the book commences with the Murray - von Neumann classification of factors, proceeds through the basic modular theory to the III). classification of Connes, and concludes with a discussion of crossed-products, Krieger's ratio set, examples of factors, and Takesaki's duality theorem.
Finite Von Neumann Algebras and Masas
Author: Allan Sinclair
Publisher: Cambridge University Press
ISBN: 0521719194
Category : Mathematics
Languages : en
Pages : 411
Book Description
The first book devoted to the general theory of finite von Neumann algebras.
Publisher: Cambridge University Press
ISBN: 0521719194
Category : Mathematics
Languages : en
Pages : 411
Book Description
The first book devoted to the general theory of finite von Neumann algebras.
Theory of Operator Algebras I
Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
ISBN: 1461261880
Category : Mathematics
Languages : en
Pages : 424
Book Description
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1461261880
Category : Mathematics
Languages : en
Pages : 424
Book Description
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Real Operator Algebras
Author: Bingren Li
Publisher: World Scientific
ISBN: 9789812795182
Category : Mathematics
Languages : en
Pages : 264
Book Description
Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras,
Publisher: World Scientific
ISBN: 9789812795182
Category : Mathematics
Languages : en
Pages : 264
Book Description
Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras,
C*-Algebras and W*-Algebras
Author: Shoichiro Sakai
Publisher: Springer Science & Business Media
ISBN: 3642619932
Category : Mathematics
Languages : en
Pages : 271
Book Description
From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews
Publisher: Springer Science & Business Media
ISBN: 3642619932
Category : Mathematics
Languages : en
Pages : 271
Book Description
From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews
Von Neumann Algebras
Author: J. Dixmier
Publisher: Elsevier
ISBN: 0080960154
Category : Mathematics
Languages : en
Pages : 479
Book Description
In this book, we study, under the name of von Neumann algebras, those algebras generally known as “rings of operators“ or “W*-algebras.“ The new terminology, suggested by J. Dieudonng, is fully justified from the historical point of view. Certain of the results are valid for more general algebras. We have, however systematically avoided this kind of generalization, except when it would facilitate the study of von Neumann algebras themselves. Parts I and I1 comprise those results which at present appear to’be the most useful for applications, although we do not embark on the study of those applications. Part 111, which is more technical, is primarily intended for specialists; it is virtually independent of Part 11.
Publisher: Elsevier
ISBN: 0080960154
Category : Mathematics
Languages : en
Pages : 479
Book Description
In this book, we study, under the name of von Neumann algebras, those algebras generally known as “rings of operators“ or “W*-algebras.“ The new terminology, suggested by J. Dieudonng, is fully justified from the historical point of view. Certain of the results are valid for more general algebras. We have, however systematically avoided this kind of generalization, except when it would facilitate the study of von Neumann algebras themselves. Parts I and I1 comprise those results which at present appear to’be the most useful for applications, although we do not embark on the study of those applications. Part 111, which is more technical, is primarily intended for specialists; it is virtually independent of Part 11.
C*-Algebras and Operator Theory
Author: Gerald J. Murphy
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Hochschild Cohomology of Von Neumann Algebras
Author: Allan M. Sinclair
Publisher: Cambridge University Press
ISBN: 0521478804
Category : Mathematics
Languages : en
Pages : 208
Book Description
This is an introductory text intended to give the non-specialist a comprehensive insight into the science of biotransformations. The book traces the history of biotransformations, clearly spells out the pros and cons of conducting enzyme-mediated versus whole-cell bioconversions, and gives a variety of examples wherein the bio-reaction is a key element in a reaction sequence leading from cheap starting materials to valuable end products.
Publisher: Cambridge University Press
ISBN: 0521478804
Category : Mathematics
Languages : en
Pages : 208
Book Description
This is an introductory text intended to give the non-specialist a comprehensive insight into the science of biotransformations. The book traces the history of biotransformations, clearly spells out the pros and cons of conducting enzyme-mediated versus whole-cell bioconversions, and gives a variety of examples wherein the bio-reaction is a key element in a reaction sequence leading from cheap starting materials to valuable end products.