Author: Vladilen Stepanovich Letokhov
Publisher: CRC Press
ISBN: 1000445127
Category : Science
Languages : en
Pages : 397
Book Description
Laser spectroscopy has been perfected over the last fifteen years to become a precise tool for the investigation of highly vibrationally excited molecules. Intense infrared laser radiation permits both the multiple-photon resonant excitation and the dissociation of polyatomic molecules. In this book, the latest results of some of the foremost Soviet researchers are published for the first time in the West. Laser Spectroscopy of Highly Vibrationally Excited Molecules contains a comprehensive study of both the experimental and theoretical aspects of the basic photophysical interactions that occur in these processes. The book first focuses on the nonlinear interaction between the resonant vibrational mode and the intense infrared field and then examines the nonlinear interaction between the vibrational modes themselves due to anharmonicity. These interrelated processes determine all the characteristics of polyatomic molecules in an infrared field. The book also discusses related phenomena such as spectra broadening, optical resonance, photon echoes, and dynamical chaos. It includes examples of multiple-photon resonant excitation such as the excitation of OsO4 by CO^O2 laser radiation, which is detected by the visible luminescence that results. This book will be of great interest to researchers and postgraduate students in infrared laser spectroscopy and the laser chemistry of molecules and applications of isotope separation.
Laser Spectroscopy of Highly Vibrationally Excited Molecules
Author: Vladilen Stepanovich Letokhov
Publisher: CRC Press
ISBN: 1000445127
Category : Science
Languages : en
Pages : 397
Book Description
Laser spectroscopy has been perfected over the last fifteen years to become a precise tool for the investigation of highly vibrationally excited molecules. Intense infrared laser radiation permits both the multiple-photon resonant excitation and the dissociation of polyatomic molecules. In this book, the latest results of some of the foremost Soviet researchers are published for the first time in the West. Laser Spectroscopy of Highly Vibrationally Excited Molecules contains a comprehensive study of both the experimental and theoretical aspects of the basic photophysical interactions that occur in these processes. The book first focuses on the nonlinear interaction between the resonant vibrational mode and the intense infrared field and then examines the nonlinear interaction between the vibrational modes themselves due to anharmonicity. These interrelated processes determine all the characteristics of polyatomic molecules in an infrared field. The book also discusses related phenomena such as spectra broadening, optical resonance, photon echoes, and dynamical chaos. It includes examples of multiple-photon resonant excitation such as the excitation of OsO4 by CO^O2 laser radiation, which is detected by the visible luminescence that results. This book will be of great interest to researchers and postgraduate students in infrared laser spectroscopy and the laser chemistry of molecules and applications of isotope separation.
Publisher: CRC Press
ISBN: 1000445127
Category : Science
Languages : en
Pages : 397
Book Description
Laser spectroscopy has been perfected over the last fifteen years to become a precise tool for the investigation of highly vibrationally excited molecules. Intense infrared laser radiation permits both the multiple-photon resonant excitation and the dissociation of polyatomic molecules. In this book, the latest results of some of the foremost Soviet researchers are published for the first time in the West. Laser Spectroscopy of Highly Vibrationally Excited Molecules contains a comprehensive study of both the experimental and theoretical aspects of the basic photophysical interactions that occur in these processes. The book first focuses on the nonlinear interaction between the resonant vibrational mode and the intense infrared field and then examines the nonlinear interaction between the vibrational modes themselves due to anharmonicity. These interrelated processes determine all the characteristics of polyatomic molecules in an infrared field. The book also discusses related phenomena such as spectra broadening, optical resonance, photon echoes, and dynamical chaos. It includes examples of multiple-photon resonant excitation such as the excitation of OsO4 by CO^O2 laser radiation, which is detected by the visible luminescence that results. This book will be of great interest to researchers and postgraduate students in infrared laser spectroscopy and the laser chemistry of molecules and applications of isotope separation.
Time-Resolved Vibrational Spectroscopy V
Author: Hiroaki Takahashi
Publisher: Springer Science & Business Media
ISBN: 3642847714
Category : Science
Languages : en
Pages : 343
Book Description
The work contained in this volume is representative of the presentations made by the participants at the Fifth International Conference on Time-Resolved Vibra tional Spectroscopy, which was held at Waseda University, Tokyo, Japan, from June 3 to 7, 1991. The conference was the fifth in a biennial series initiated in 1982 by Prof. George H. Atkinson (University of Arizona) at Lake Placid, USA, and subsequently convened by Prof. Alfred Laubereau (University of Bayreuth, Germany) and Dr. Manfred Stockburger (Max-Planck Institut, G6ttingen, Ger many) at Bayreuth-BischofsgrUn, Germany, in 1985, by Prof. Joop D.W. Van Voorst (University of Amsterdam) at Amersfoort, The Netherlands, in 1987, and by Prof. Thomas G. Spiro (princeton University) at Princeton, USA, in 1989. The purpose of the conference is to bring together researchers from various disciplines and provide a forum for discussion of the latest advances in time resolved spectroscopies concerned with transient vibrational phenomena and their application to fundamental scientific and engineering studies. The 167 registered participants, including 46 students, from 14 different countries, represented a wide range of scientific disciplines, and clearly indicated that the field continues to expand into new areas of physics, chemistry, biology, and materials science. Their enthusiasm and the originality and quality of the contributions presented produced a very successful and enjoyable conference.
Publisher: Springer Science & Business Media
ISBN: 3642847714
Category : Science
Languages : en
Pages : 343
Book Description
The work contained in this volume is representative of the presentations made by the participants at the Fifth International Conference on Time-Resolved Vibra tional Spectroscopy, which was held at Waseda University, Tokyo, Japan, from June 3 to 7, 1991. The conference was the fifth in a biennial series initiated in 1982 by Prof. George H. Atkinson (University of Arizona) at Lake Placid, USA, and subsequently convened by Prof. Alfred Laubereau (University of Bayreuth, Germany) and Dr. Manfred Stockburger (Max-Planck Institut, G6ttingen, Ger many) at Bayreuth-BischofsgrUn, Germany, in 1985, by Prof. Joop D.W. Van Voorst (University of Amsterdam) at Amersfoort, The Netherlands, in 1987, and by Prof. Thomas G. Spiro (princeton University) at Princeton, USA, in 1989. The purpose of the conference is to bring together researchers from various disciplines and provide a forum for discussion of the latest advances in time resolved spectroscopies concerned with transient vibrational phenomena and their application to fundamental scientific and engineering studies. The 167 registered participants, including 46 students, from 14 different countries, represented a wide range of scientific disciplines, and clearly indicated that the field continues to expand into new areas of physics, chemistry, biology, and materials science. Their enthusiasm and the originality and quality of the contributions presented produced a very successful and enjoyable conference.
Plasma Physics and Engineering
Author: Alexander Fridman
Publisher: CRC Press
ISBN: 9781560328483
Category : Science
Languages : en
Pages : 888
Book Description
Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. An essential tool for understanding this dynamic field, Plasma Physics and Engineering provides a clear, fundamental introduction to virtually all aspects of modern plasma science and technology, including plasma chemistry and engineering, combustion, chemical physics, lasers, electronics, methods of material treatment, fuel conversion, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, many helpful numerical formulas for practical calculations, and an array of problems and concept questions.
Publisher: CRC Press
ISBN: 9781560328483
Category : Science
Languages : en
Pages : 888
Book Description
Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. An essential tool for understanding this dynamic field, Plasma Physics and Engineering provides a clear, fundamental introduction to virtually all aspects of modern plasma science and technology, including plasma chemistry and engineering, combustion, chemical physics, lasers, electronics, methods of material treatment, fuel conversion, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, many helpful numerical formulas for practical calculations, and an array of problems and concept questions.
Highly Excited Molecules
Author: Amy S. Mullin
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 352
Book Description
Integrating both theoretical and experimental approaches, this unique book examines transition states and chemical reactivity, and will be a useful tool for anyone studying the chemical dynamics, nature, and behavior of molecules in an excited state. The subject has important applications in atmospheric chemistry, plasmas, high-temperature materials processing, combustion, photosynthesis, detonation, and explosives.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 352
Book Description
Integrating both theoretical and experimental approaches, this unique book examines transition states and chemical reactivity, and will be a useful tool for anyone studying the chemical dynamics, nature, and behavior of molecules in an excited state. The subject has important applications in atmospheric chemistry, plasmas, high-temperature materials processing, combustion, photosynthesis, detonation, and explosives.
Nuclear Science Abstracts
Plasma Chemistry
Author: Alexander Fridman
Publisher: Cambridge University Press
ISBN: 1139471732
Category : Technology & Engineering
Languages : en
Pages :
Book Description
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Publisher: Cambridge University Press
ISBN: 1139471732
Category : Technology & Engineering
Languages : en
Pages :
Book Description
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Encyclopedia of Chemical Physics and Physical Chemistry
Author: John H. Moore
Publisher: CRC Press
ISBN: 1003803288
Category : Science
Languages : en
Pages : 986
Book Description
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.
Publisher: CRC Press
ISBN: 1003803288
Category : Science
Languages : en
Pages : 986
Book Description
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.
Scientific and Technical Aerospace Reports
Topics in Fluorescence Spectroscopy
Author: Joseph R. Lakowicz
Publisher: Springer Science & Business Media
ISBN: 0306470705
Category : Science
Languages : en
Pages : 555
Book Description
Fluorescence spectroscopy continues its advance to more sophisticated methods and applications. As one looks over the previous decades, its appears that the first practical instruments for time-resolved measurements appeared in the 1970’s. The instrumentation and analysis methods for time-resolved fluorescence advanced rapidly throughout the 1980’s. Since 1990 we have witnessed a rapid migration of the principles of time-resolved fluorescence to cell biology and clinical appli- tions. Most recently, we have seen the introduction of multi-photon excitation, pump-probe and stimulated emission methods for studies of biological mac- molecules and for cellular imaging. These advanced topics are the subject of the present volume. Two-photon excitation was first predicted by Maria Goppert-Mayer in 1931, but was not experimentally observed until 1961. Observation of two-photon excitation required the introduction of lasers which provided adequate photon density for multi-photon absorption. Since the early observations of two-photon excitation in the 1960s, multi-photon spectroscopy has been limited to somewhat exotic applications of chemical physics, where it is used to study the electronic symmetry of small molecules. Placing one’s self back in 1980, it would be hard to imagine the use of multi-photon excitation in biophysics or cellular imaging.
Publisher: Springer Science & Business Media
ISBN: 0306470705
Category : Science
Languages : en
Pages : 555
Book Description
Fluorescence spectroscopy continues its advance to more sophisticated methods and applications. As one looks over the previous decades, its appears that the first practical instruments for time-resolved measurements appeared in the 1970’s. The instrumentation and analysis methods for time-resolved fluorescence advanced rapidly throughout the 1980’s. Since 1990 we have witnessed a rapid migration of the principles of time-resolved fluorescence to cell biology and clinical appli- tions. Most recently, we have seen the introduction of multi-photon excitation, pump-probe and stimulated emission methods for studies of biological mac- molecules and for cellular imaging. These advanced topics are the subject of the present volume. Two-photon excitation was first predicted by Maria Goppert-Mayer in 1931, but was not experimentally observed until 1961. Observation of two-photon excitation required the introduction of lasers which provided adequate photon density for multi-photon absorption. Since the early observations of two-photon excitation in the 1960s, multi-photon spectroscopy has been limited to somewhat exotic applications of chemical physics, where it is used to study the electronic symmetry of small molecules. Placing one’s self back in 1980, it would be hard to imagine the use of multi-photon excitation in biophysics or cellular imaging.
Introduction to Molecular Energy Transfer
Author: James Yardley
Publisher: Elsevier
ISBN: 0323156037
Category : Science
Languages : en
Pages : 321
Book Description
Introduction to Molecular Energy Transfer intends to provide an elementary introduction to the subject of molecular energy transfer and relaxation. The book covers the foundation of molecular energy transfer such as quantum mechanics; the vibrational state of molecules; and vibrational energy transfer and the experimental methods for its study. Coverage also includes the different kinds of energy transfer in gases; vibrational relaxation in condensed phases; electronic states and interactions; electronic energy as a result of intermolecular interaction; radiationless electronic transition; and rotational energy transfer. The text is recommended for students, graduates, and researchers in the fields of physics and chemistry, especially those who would like to know more about molecular energy transfer.
Publisher: Elsevier
ISBN: 0323156037
Category : Science
Languages : en
Pages : 321
Book Description
Introduction to Molecular Energy Transfer intends to provide an elementary introduction to the subject of molecular energy transfer and relaxation. The book covers the foundation of molecular energy transfer such as quantum mechanics; the vibrational state of molecules; and vibrational energy transfer and the experimental methods for its study. Coverage also includes the different kinds of energy transfer in gases; vibrational relaxation in condensed phases; electronic states and interactions; electronic energy as a result of intermolecular interaction; radiationless electronic transition; and rotational energy transfer. The text is recommended for students, graduates, and researchers in the fields of physics and chemistry, especially those who would like to know more about molecular energy transfer.