Author: Gilbert de B. Robinson
Publisher: Courier Corporation
ISBN: 0486321045
Category : Mathematics
Languages : en
Pages : 194
Book Description
Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.
Vector Geometry
Author: Gilbert de B. Robinson
Publisher: Courier Corporation
ISBN: 0486321045
Category : Mathematics
Languages : en
Pages : 194
Book Description
Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.
Publisher: Courier Corporation
ISBN: 0486321045
Category : Mathematics
Languages : en
Pages : 194
Book Description
Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.
Vectors, Matrices and Geometry
Author: K.T. Leung
Publisher: Hong Kong University Press
ISBN: 9622093604
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is the last volume of a three-book series written for Sixth Form students and first-year undergraduates. It introduces the important concepts of finite-dimensional vector spaces through the careful study of Euclidean geometry. In turn, methods of linear algebra are then used in the study of coordinate transformations through which a complete classification of conic sections and quadric surfaces is obtained. The book concludes with a detailed treatment of linear equations in n variables in the language of vectors and matrices. Illustrative examples are included in the main text and numerous exercises are given in each section. The other books in the series are Fundamental Concepts of Mathematics (published 1988) and Polynomials and Equations (published 1992).
Publisher: Hong Kong University Press
ISBN: 9622093604
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is the last volume of a three-book series written for Sixth Form students and first-year undergraduates. It introduces the important concepts of finite-dimensional vector spaces through the careful study of Euclidean geometry. In turn, methods of linear algebra are then used in the study of coordinate transformations through which a complete classification of conic sections and quadric surfaces is obtained. The book concludes with a detailed treatment of linear equations in n variables in the language of vectors and matrices. Illustrative examples are included in the main text and numerous exercises are given in each section. The other books in the series are Fundamental Concepts of Mathematics (published 1988) and Polynomials and Equations (published 1992).
A Vector Space Approach to Geometry
Author: Melvin Hausner
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417
Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417
Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Analytic Geometry with an Introduction to Vectors and Matrices
Author: David Carruthers Murdoch
Publisher: New York : J. Wiley & Sons
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 320
Book Description
Publisher: New York : J. Wiley & Sons
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 320
Book Description
Geometric Multiplication of Vectors
Author: Miroslav Josipović
Publisher: Springer Nature
ISBN: 3030017567
Category : Mathematics
Languages : en
Pages : 241
Book Description
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Publisher: Springer Nature
ISBN: 3030017567
Category : Mathematics
Languages : en
Pages : 241
Book Description
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Linear Algebra Through Geometry
Author: Thomas Banchoff
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Vectors and Matrices for Geometric and 3D Modeling
Author: Michael Mortenson
Publisher: Industrial Press
ISBN: 9780831136550
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Publisher: Industrial Press
ISBN: 9780831136550
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
A Mathematical Primer for Social Statistics
Author: John Fox
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 199
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 199
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Algebra and Geometry with Python
Author: Sergei Kurgalin
Publisher: Springer Nature
ISBN: 3030615413
Category : Computers
Languages : en
Pages : 429
Book Description
This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.
Publisher: Springer Nature
ISBN: 3030615413
Category : Computers
Languages : en
Pages : 429
Book Description
This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.