Varieties of Groups PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Varieties of Groups PDF full book. Access full book title Varieties of Groups by Hanna Neumann. Download full books in PDF and EPUB format.

Varieties of Groups

Varieties of Groups PDF Author: Hanna Neumann
Publisher: Springer Science & Business Media
ISBN: 3642885993
Category : Mathematics
Languages : en
Pages : 202

Book Description
Varieties of algebras are equationally defined classes of algebras, or "primitive classes" in MAL'CEV'S terminology. They made their first explicit appearance in the 1930's, in Garrett BIRKHOFF'S paper on "The structure of abstract algebras" and B. H. NEUMANN'S paper "Identical relations in groups I". For quite some time after this, there is little published evidence that the subject remained alive. In fact, however, as part of "universal algebra", it aroused great interest amongst those who had access, directly or indirectly, to PHILIP HALL'S lectures given at Cambridge late in the 1940's. More recently, category theory has provided a general setting since varieties, suitably interpreted, are very special examples of categories. Whether their relevance to category theory goes beyond this, I do not know. And I doubt that the category theoretical approach to varieties will be more than a fringe benefit to group theory. Whether or not my doubts have substance, the present volume owes its existence not to the fact that varieties fit into a vastly more general pattern, but to the benefit group theory has derived from the classification of groups by varietal properties. It is this aspect of the study of varieties that seems to have caused its reappearance in the literature in the 1950's.

Varieties of Groups

Varieties of Groups PDF Author: Hanna Neumann
Publisher: Springer Science & Business Media
ISBN: 3642885993
Category : Mathematics
Languages : en
Pages : 202

Book Description
Varieties of algebras are equationally defined classes of algebras, or "primitive classes" in MAL'CEV'S terminology. They made their first explicit appearance in the 1930's, in Garrett BIRKHOFF'S paper on "The structure of abstract algebras" and B. H. NEUMANN'S paper "Identical relations in groups I". For quite some time after this, there is little published evidence that the subject remained alive. In fact, however, as part of "universal algebra", it aroused great interest amongst those who had access, directly or indirectly, to PHILIP HALL'S lectures given at Cambridge late in the 1940's. More recently, category theory has provided a general setting since varieties, suitably interpreted, are very special examples of categories. Whether their relevance to category theory goes beyond this, I do not know. And I doubt that the category theoretical approach to varieties will be more than a fringe benefit to group theory. Whether or not my doubts have substance, the present volume owes its existence not to the fact that varieties fit into a vastly more general pattern, but to the benefit group theory has derived from the classification of groups by varietal properties. It is this aspect of the study of varieties that seems to have caused its reappearance in the literature in the 1950's.

Varieties of Representations of Finitely Generated Groups

Varieties of Representations of Finitely Generated Groups PDF Author: Alexander Lubotzky
Publisher: American Mathematical Soc.
ISBN: 082182337X
Category : Mathematics
Languages : en
Pages : 134

Book Description
The n-dimensional representations, over an algebraically closed characteristic zero field k, of a finitely generated group are parameterized by an affine algebraic variety over k. The tangent spaces of this variety are subspaces of spaces of one-cocycles and thus the geometry of the variety is locally related to the cohomology of the group. The cohomology is also related to the prounipotent radical of the proalgebraic hull of the group. This paper exploits these two relations to compute dimensions of representation varieties, especially for nilpotent groups and their generalizations. It also presents the foundations of the theory of representation varieties in an expository, self-contained manner.

Representations of Fundamental Groups of Algebraic Varieties

Representations of Fundamental Groups of Algebraic Varieties PDF Author: Kang Zuo
Publisher: Springer
ISBN: 3540484248
Category : Mathematics
Languages : en
Pages : 142

Book Description
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.

Kac-Moody Groups, their Flag Varieties and Representation Theory

Kac-Moody Groups, their Flag Varieties and Representation Theory PDF Author: Shrawan Kumar
Publisher: Springer Science & Business Media
ISBN: 9780817642273
Category : Mathematics
Languages : en
Pages : 630

Book Description
"Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case." —MATHEMATICAL REVIEWS "A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. " —ZENTRALBLATT MATH

Toroidal Groups

Toroidal Groups PDF Author: Yukitaka Abe
Publisher: Springer
ISBN: 3540449396
Category : Mathematics
Languages : en
Pages : 139

Book Description
Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.

M-Solid Varieties of Algebras

M-Solid Varieties of Algebras PDF Author: Jörg Koppitz
Publisher: Springer Science & Business Media
ISBN: 9780387308043
Category : Mathematics
Languages : en
Pages : 364

Book Description
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.

Rational Points on Varieties

Rational Points on Varieties PDF Author: Bjorn Poonen
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358

Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Flag Varieties

Flag Varieties PDF Author: V Lakshmibai
Publisher: Springer
ISBN: 9811313938
Category : Mathematics
Languages : en
Pages : 315

Book Description
This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications—singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences.

Dominions in Varieties of Groups

Dominions in Varieties of Groups PDF Author: Arturo Viso Magidin
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Book Description


An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups PDF Author: Meinolf Geck
Publisher: Oxford University Press
ISBN: 019967616X
Category : Mathematics
Languages : en
Pages : 321

Book Description
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.