Learning Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Learning Control PDF full book. Access full book title Learning Control by Dan Zhang. Download full books in PDF and EPUB format.

Learning Control

Learning Control PDF Author: Dan Zhang
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282

Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots

Learning Control

Learning Control PDF Author: Dan Zhang
Publisher: Elsevier
ISBN: 0128223154
Category : Technology & Engineering
Languages : en
Pages : 282

Book Description
Learning Control: Applications in Robotics and Complex Dynamical Systems provides a foundational understanding of control theory while also introducing exciting cutting-edge technologies in the field of learning-based control. State-of-the-art techniques involving machine learning and artificial intelligence (AI) are covered, as are foundational control theories and more established techniques such as adaptive learning control, reinforcement learning control, impedance control, and deep reinforcement control. Each chapter includes case studies and real-world applications in robotics, AI, aircraft and other vehicles and complex dynamical systems. Computational methods for control systems, particularly those used for developing AI and other machine learning techniques, are also discussed at length. - Provides foundational control theory concepts, along with advanced techniques and the latest advances in adaptive control and robotics - Introduces state-of-the-art learning-based control technologies and their applications in robotics and other complex dynamical systems - Demonstrates computational techniques for control systems - Covers iterative learning impedance control in both human-robot interaction and collaborative robots

Hidden Markov Models and Applications

Hidden Markov Models and Applications PDF Author: Nizar Bouguila
Publisher: Springer Nature
ISBN: 3030991423
Category : Technology & Engineering
Languages : en
Pages : 303

Book Description
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents recent inference frameworks and applications that consider HMMs. The authors discuss challenging problems that exist when considering HMMs for a specific task or application, such as estimation or selection, etc. The goal of this volume is to summarize the recent advances and modern approaches related to these problems. The book also reports advances on classic but difficult problems in HMMs such as inference and feature selection and describes real-world applications of HMMs from several domains. The book pertains to researchers and graduate students, who will gain a clear view of recent developments related to HMMs and their applications.

Image Analysis and Recognition

Image Analysis and Recognition PDF Author: Fakhri Karray
Publisher: Springer
ISBN: 3030272729
Category : Computers
Languages : en
Pages : 499

Book Description
This two-volume set LNCS 11662 and 11663 constitutes the refereed proceedings of the 16th International Conference on Image Analysis and Recognition, ICIAR 2019, held in Waterloo, ON, Canada, in August 2019. The 58 full papers presented together with 24 short and 2 poster papers were carefully reviewed and selected from 142 submissions. The papers are organized in the following topical sections: Image Processing; Image Analysis; Signal Processing Techniques for Ultrasound Tissue Characterization and Imaging in Complex Biological Media; Advances in Deep Learning; Deep Learning on the Edge; Recognition; Applications; Medical Imaging and Analysis Using Deep Learning and Machine Intelligence; Image Analysis and Recognition for Automotive Industry; Adaptive Methods for Ultrasound Beamforming and Motion Estimation.

Intelligent Information and Database Systems

Intelligent Information and Database Systems PDF Author: Ngoc Thanh Nguyen
Publisher: Springer Nature
ISBN: 3030732800
Category : Computers
Languages : en
Pages : 867

Book Description
This book constitutes the refereed proceedings of the 13th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2021, held in Phuket, Thailand, in April 2021.* The 67 full papers accepted for publication in these proceedings were carefully reviewed and selected from 291 submissions. The papers of the first volume are organized in the following topical sections: data mining methods and applications; machine learning methods; decision support and control systems; natural language processing; cybersecurity intelligent methods; computer vision techniques; computational imaging and vision; advanced data mining techniques and applications; intelligent and contextual systems; commonsense knowledge, reasoning and programming in artificial intelligence; data modelling and processing for industry 4.0; innovations in intelligent systems. *The conference was held virtually.

Mixture Models and Applications

Mixture Models and Applications PDF Author: Nizar Bouguila
Publisher: Springer
ISBN: 3030238768
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.

Advanced Data Mining and Applications

Advanced Data Mining and Applications PDF Author: Shuigeng Zhou
Publisher: Springer Science & Business Media
ISBN: 3642355277
Category : Computers
Languages : en
Pages : 812

Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Advanced Data Mining and Applications, ADMA 2012, held in Nanjing, China, in December 2012. The 32 regular papers and 32 short papers presented in this volume were carefully reviewed and selected from 168 submissions. They are organized in topical sections named: social media mining; clustering; machine learning: algorithms and applications; classification; prediction, regression and recognition; optimization and approximation; mining time series and streaming data; Web mining and semantic analysis; data mining applications; search and retrieval; information recommendation and hiding; outlier detection; topic modeling; and data cube computing.

Advanced Mean Field Methods

Advanced Mean Field Methods PDF Author: Manfred Opper
Publisher: MIT Press
ISBN: 9780262150545
Category : Computers
Languages : en
Pages : 300

Book Description
This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Neural Information Processing

Neural Information Processing PDF Author: Bao-Liang Lu
Publisher: Springer Science & Business Media
ISBN: 3642249574
Category : Computers
Languages : en
Pages : 799

Book Description
The three volume set LNCS 7062, LNCS 7063, and LNCS 7064 constitutes the proceedings of the 18th International Conference on Neural Information Processing, ICONIP 2011, held in Shanghai, China, in November 2011. The 262 regular session papers presented were carefully reviewed and selected from numerous submissions. The papers of part I are organized in topical sections on perception, emotion and development, bioinformatics, biologically inspired vision and recognition, bio-medical data analysis, brain signal processing, brain-computer interfaces, brain-like systems, brain-realistic models for learning, memory and embodied cognition, Clifford algebraic neural networks, combining multiple learners, computational advances in bioinformatics, and computational-intelligent human computer interaction. The second volume is structured in topical sections on cybersecurity and data mining workshop, data mining and knowledge doscovery, evolutionary design and optimisation, graphical models, human-originated data analysis and implementation, information retrieval, integrating multiple nature-inspired approaches, Kernel methods and support vector machines, and learning and memory. The third volume contains all the contributions connected with multi-agent systems, natural language processing and intelligent Web information processing, neural encoding and decoding, neural network models, neuromorphic hardware and implementations, object recognition, visual perception modelling, and advances in computational intelligence methods based pattern recognition.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Hendrik Blockeel
Publisher: Springer
ISBN: 3642409911
Category : Computers
Languages : en
Pages : 732

Book Description
This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.

Database Systems for Advanced Applications

Database Systems for Advanced Applications PDF Author: Wook-Shin Han
Publisher: Springer
ISBN: 3662439840
Category : Computers
Languages : en
Pages : 439

Book Description
This book constitutes the workshop proceedings of the 19th International Conference on Database Systems for Advanced Applications, DASFAA 2014, held in Bali, Indonesia, in April 2014. The volume contains papers from 4 workshops, each focusing on hot topics related to database systems and applications: the Second International Workshop on Big Data Management and Analytics, BDMA 2014; the Third International Workshop on Data Management for Emerging Network Infrastructure, DaMEN 2014; the Third International Workshop on Spatial Information Modeling, Management and Mining, SIM3 2014, and the DASFAA Workshop on Uncertain and Crowdsourced Data, UnCrowd 2014.