Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes PDF full book. Access full book title Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes by Michael J. Lavelle. Download full books in PDF and EPUB format.

Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes

Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes PDF Author: Michael J. Lavelle
Publisher:
ISBN:
Category : Nitrogen fertilizers
Languages : en
Pages : 150

Book Description


Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes

Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes PDF Author: Michael J. Lavelle
Publisher:
ISBN:
Category : Nitrogen fertilizers
Languages : en
Pages : 150

Book Description


Variation Among Grain Sorghum Genotypes in Response to Nitrogen Fertilizer

Variation Among Grain Sorghum Genotypes in Response to Nitrogen Fertilizer PDF Author: George Yakubu Mahama
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid regions of Africa, Asia and United States. Productivity of grain sorghum is limited by soil fertility, especially nitrogen (N). Sorghum genotypes are known to vary in their response to nitrogen, however, the information on nitrogen use efficiency (NUE) is limited. The objectives of this research were to (a) determine the response of sorghum genotypes (hybrids and inbred lines) to nitrogen fertilizer (b) quantify genotypic differences in NUE; and (c) determine physiological and morphological basis of NUE. Field experiments were conducted at three locations in Kansas (Hays, Ottawa and Manhattan) during 2010 and 2011. Six hybrids and six inbred lines of grain sorghum were grown with 0, 45 and 90 kg N ha−1. The experimental design was a split-plot design with N regimes as main plots and genotypes as sub-plot, with four replications. Planting was done in May and June across all the locations, and nitrogen fertilizer (Urea, 46% N) was applied at emergence. Data on N concentration in the leaves, stems and grain were determined. NUE and components of N use were computed for Ottawa and Manhattan as follows: Nitrogen use efficiency (NUE): Grain weight / N supplied; Nitrogen utilization efficiency: Grain weight / N total in plant; Nitrogen uptake efficiency: N total in plant / N supplied; Percent fertilizer recovery = [uptake (fertilized plot) N uptake (un- fertilized plot)] / [N applied] x 100; and Nitrogen harvest index (NHI) = Grain N / N total in plant. Where N supplied = Rate of N fertilizer applied + soil N supplied. Growth and yield data were collected at all locations. There were significant effects of genotypes (P

Nitrogen Use Efficiency and Water Use Efficiency of Grain Sorghum, Sorghum Bicolor (L.), Genotypes as Affected by Three Forms of Nitrogen Fertilizer at Two Soil Water Potentials and Three Growth Stages

Nitrogen Use Efficiency and Water Use Efficiency of Grain Sorghum, Sorghum Bicolor (L.), Genotypes as Affected by Three Forms of Nitrogen Fertilizer at Two Soil Water Potentials and Three Growth Stages PDF Author: Jeongmin Lee
Publisher:
ISBN:
Category : Crops and nitrogen
Languages : en
Pages : 242

Book Description


Nutrient Use Efficiency: from Basics to Advances

Nutrient Use Efficiency: from Basics to Advances PDF Author: Amitava Rakshit
Publisher: Springer
ISBN: 8132221699
Category : Technology & Engineering
Languages : en
Pages : 417

Book Description
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.

Agronomic Assessments of Genotypic Variation Among Stay-green and Senescent Sorghum Hybrids Under Different Rates of Nitrogen

Agronomic Assessments of Genotypic Variation Among Stay-green and Senescent Sorghum Hybrids Under Different Rates of Nitrogen PDF Author: Sylvester Addy
Publisher:
ISBN:
Category : Chlorophyll
Languages : en
Pages : 138

Book Description
Investigates the difference in the nitrogen (N) status between stay-green and senescent sorghum hybrids by assessing the genotypic variability for chlorophyll content and leaf senescence under three rates of N supply to determine the minimum supply required for the expression of the stay-green phenotype in the stay-green hybrid. Compares nitrogen use, uptake, and utilization efficiencies and examines grain yield and differences in dry matter and plant nitrogen content in plant parts at harvest.

Handbook of Plant and Crop Physiology

Handbook of Plant and Crop Physiology PDF Author: Mohammad Pessarakli
Publisher: CRC Press
ISBN: 082474134X
Category : Science
Languages : en
Pages : 997

Book Description
With contributions from over 70 international experts, this reference provides comprehensive coverage of plant physiological stages and processes under both normal and stressful conditions. It emphasizes environmental factors, climatic changes, developmental stages, and growth regulators as well as linking plant and crop physiology to the production of food, feed, and medicinal compounds. Offering over 300 useful tables, equations, drawings, photographs, and micrographs, the book covers cellular and molecular aspects of plant and crop physiology, plant and crop physiological responses to heavy metal concentration and agrichemicals, computer modeling in plant physiology, and more.

Evaluation of Sorghum Genotypes for Water Use Efficiency and Nitrogen Use Efficiency

Evaluation of Sorghum Genotypes for Water Use Efficiency and Nitrogen Use Efficiency PDF Author: Madhulika
Publisher:
ISBN:
Category : Crops and nitrogen
Languages : en
Pages : 376

Book Description


Assesment of Sorghum Response to Nitrogen Availability

Assesment of Sorghum Response to Nitrogen Availability PDF Author: Fatima Awada
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Seven accessions of Sorghum bicolor were grown with low (N−) and optimal (N+) nitrate supply. Growth parameters (plant height and leaf numbers), physiological parameters (nitrate, protein, total N and total C contents) and the activity of glutamine synthetase (GS) were studied in leaves and roots of sorghum plants at three time points of early vegetative growth (2, 4 and, 6 weeks post emergence). Plant height and leaf number were higher with nitrate supply. Except for carbon, all studied parameters were sensitive to N availability and values were typically lower when nitrate supply was low. However, different genotypes displayed considerable variation in their response to N regimes. Variation among genotypes during early vegetative development was observed for plant height, but not for leaf number. Likewise, physiological parameters varied among accessions. A significant and strong correlation, N- and accession-dependent, was detected between plant height and nitrate content. Moreover, nitrate content and GS activity at early growth stages appeared to be good markers to discriminate between nitrate uptake and assimilation capacities of different accessions under both N conditions. In some sorghum accessions, protein and total N content were indicative of high nitrate reduction and assimilation even under N limitation. Chlorophyll content was also sensitive to N availability. Furthermore, expression studies of SbNRT1.1gene copies in leaves and roots of two accessions reflected variability in expression dependent on nitrogen condition, plant organ, plant age, and gene of interest. This study is helpful to characterize different aspects of the N metabolism in sorghum and may aid in the identification of sorghum genotypes with enhanced nitrogen use efficiency, a trait that is of key interest in one of the most important crop plants in arid and semi-arid regions.

Sorghum

Sorghum PDF Author: Ignacio A. Ciampitti
Publisher: John Wiley & Sons
ISBN: 0891186271
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
Sorghum is among the top five cereals and one of the key crops in global food security efforts. Sorghum is a resilient crop under high-stress environments, ensuring productivity and access to food when other crops fail. Scientists see the potential of sorghum as a main staple food in a future challenged by climate change. The contributors provide a comprehensive review of sorghum knowledge. The discussion covers genetic improvements, development of new hybrids, biotechnology, and physiological modifications. Production topics include water and nutrient management, rotations, and pest control. Final end uses, sorghum as a bioenergy crop, markets, and the future of sorghum are presented. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.

Effects of Planting Practices and Nitrogen Management on Grain Sorghum Production

Effects of Planting Practices and Nitrogen Management on Grain Sorghum Production PDF Author: Alassane Maiga
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Sorghum [Sorghum bicolor (L.) Moench] is a relatively drought- and heat-tolerant cereal crop. Global demand and consumption of agricultural crops for food, feed, and fuel is increasing at a rapid pace. To satisfy the growing worldwide demand for grain, production practices must be well optimized and managed. The objectives of the present study were: to optimize sorghum production by determining the best management practices (planting date, row spacing, seeding rate, hybrid maturity) for growth and yield, to evaluate the agronomic responsiveness of grain sorghum genotypes to nitrogen (N) fertilizer and to develop a partial financial budget to N fertilizer application based on best management practices. In order to meet these objectives, field experiments were conducted in 2009, 2010 and 2011 at Manhattan, Belleville, Ottawa, Hutchinson, Hays, at KSU Experiment Stations and Salina, and Randolph at Private Farms. Results indicated that early planting date (late May) and narrow row spacing (25 cm) providing the most equidistant spacing, produced better plant growth, light interception, yield components (number of grains per panicle, 300-grain weight), and biological yield. Results indicated that with increasing N rate, there was a proportional increase in chlorophyll SPAD meter reading, leaf color scores and number of green leaves. There was a significant difference among hybrids for N uptake, NUE and grain yield. However, there was no effect of N and no interaction between N and hybrid on grain yield. Over all, the genotypes with high NUE also had higher grain yield. Economic analysis using partial budget indicated that all N levels had positive gross benefit greater than control at all locations. However, the response varied across locations. Our research has shown that sorghum responds to changing management practices and opportunities exist to increase grain yield by optimizing planting date, seeding rate, row spacing, N application and selection of genotypes.