Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine PDF full book. Access full book title Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine by Derek N. Duncan. Download full books in PDF and EPUB format.

Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine

Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine PDF Author: Derek N. Duncan
Publisher:
ISBN:
Category : Automobiles, Racing
Languages : en
Pages : 46

Book Description
Formula SAE is a collegiate engineering competition that has participants from around the globe. Of the 1000 points available throughout the event, 100 (10%) are dedicated to the fuel efficiency of the student built race cars. Competition rules allow either gasoline or E85, a mix of 85% ethanol and 15% gasoline, to be used as the primary fuel source. Because of the reduced specific energy content of E85, scores are normalized by applying a 1.4 divider to the final consumed volume of E85. With the desire to earn more points, a quantifiable way to determine if E85 could be an advantage was needed. To measure fuel consumption on the race track where every gram added to the car matters, a way to characterize flow rate and dead time of the fuel injector in the car was devised by finding the static flow rate and the associated combination of opening and closing times, or dead time. The method devised was designed to be simple to perform and data analysis was automated to make post processing a simple matter of transferring flow rate and dead time numbers into the engine control unit. Data recorded on track at the Formula Student Germany 2013 event and on the Oregon State University engine dynamometer were compared, and a method to estimate fuel consumption on any recorded track from engine dynamometer data was created. The estimation was first compared with recorded results from competition with an error of 2.1%, indicating that the results were reasonable to use for different engine configurations. Engine data was recorded for E85 and run through the estimation to determine how much E85 fuel would have been required to run the same event. The estimation was also used to determine how much work was done on track by the engine, which is another indicator of total system efficiency. Four engine configurations were tested. The baseline engine was the configuration used in the 2013 Global Formula Racing car, consisting of a Honda CRF450X engine, 3.8 liter intake plenum, Bosch 945 fuel injector, 13.5:1 compression piston, and a Megacycle X2 camshaft. This configuration was running on gasoline. Configuration 2 switched to a Honda 16450-MEN-A51 fuel injector. Configuration 3 changed fuel from gasoline to E85. The last configuration increased the compression ratio to 14:1. Configuration 2 had the highest overall efficiency at 34%, with configuration 4 having the highest energy generation over the course of the FSG 2013 endurance at 29.4 MJ. After normalizing energy generation, configuration 4 required the least volume of fuel to complete endurance at 2.5 liters, a reduction from 2.7 liters that the baseline required. This resulted in an approximate point increase of about 4.4. While this is an increase in point, the was determined that it was not enough to justify the use of E85 at FSAE events due to increased procurement and handling difficulty, along with reduced engine starting reliability.

Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine

Utilizing the Thermodynamic Properties of E85 to Increase the Specific Efficiency of a High Specific Output Single Cylinder Formula SAE Engine PDF Author: Derek N. Duncan
Publisher:
ISBN:
Category : Automobiles, Racing
Languages : en
Pages : 46

Book Description
Formula SAE is a collegiate engineering competition that has participants from around the globe. Of the 1000 points available throughout the event, 100 (10%) are dedicated to the fuel efficiency of the student built race cars. Competition rules allow either gasoline or E85, a mix of 85% ethanol and 15% gasoline, to be used as the primary fuel source. Because of the reduced specific energy content of E85, scores are normalized by applying a 1.4 divider to the final consumed volume of E85. With the desire to earn more points, a quantifiable way to determine if E85 could be an advantage was needed. To measure fuel consumption on the race track where every gram added to the car matters, a way to characterize flow rate and dead time of the fuel injector in the car was devised by finding the static flow rate and the associated combination of opening and closing times, or dead time. The method devised was designed to be simple to perform and data analysis was automated to make post processing a simple matter of transferring flow rate and dead time numbers into the engine control unit. Data recorded on track at the Formula Student Germany 2013 event and on the Oregon State University engine dynamometer were compared, and a method to estimate fuel consumption on any recorded track from engine dynamometer data was created. The estimation was first compared with recorded results from competition with an error of 2.1%, indicating that the results were reasonable to use for different engine configurations. Engine data was recorded for E85 and run through the estimation to determine how much E85 fuel would have been required to run the same event. The estimation was also used to determine how much work was done on track by the engine, which is another indicator of total system efficiency. Four engine configurations were tested. The baseline engine was the configuration used in the 2013 Global Formula Racing car, consisting of a Honda CRF450X engine, 3.8 liter intake plenum, Bosch 945 fuel injector, 13.5:1 compression piston, and a Megacycle X2 camshaft. This configuration was running on gasoline. Configuration 2 switched to a Honda 16450-MEN-A51 fuel injector. Configuration 3 changed fuel from gasoline to E85. The last configuration increased the compression ratio to 14:1. Configuration 2 had the highest overall efficiency at 34%, with configuration 4 having the highest energy generation over the course of the FSG 2013 endurance at 29.4 MJ. After normalizing energy generation, configuration 4 required the least volume of fuel to complete endurance at 2.5 liters, a reduction from 2.7 liters that the baseline required. This resulted in an approximate point increase of about 4.4. While this is an increase in point, the was determined that it was not enough to justify the use of E85 at FSAE events due to increased procurement and handling difficulty, along with reduced engine starting reliability.

HCCI and CAI Engines for the Automotive Industry

HCCI and CAI Engines for the Automotive Industry PDF Author: Hua Zhao
Publisher: CRC Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 562

Book Description
Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.

Handbook of Diesel Engines

Handbook of Diesel Engines PDF Author: Klaus Mollenhauer
Publisher: Springer Science & Business Media
ISBN: 3540890831
Category : Technology & Engineering
Languages : en
Pages : 632

Book Description
This machine is destined to completely revolutionize cylinder diesel engine up through large low speed t- engine engineering and replace everything that exists. stroke diesel engines. An appendix lists the most (From Rudolf Diesel’s letter of October 2, 1892 to the important standards and regulations for diesel engines. publisher Julius Springer. ) Further development of diesel engines as economiz- Although Diesel’s stated goal has never been fully ing, clean, powerful and convenient drives for road and achievable of course, the diesel engine indeed revolu- nonroad use has proceeded quite dynamically in the tionized drive systems. This handbook documents the last twenty years in particular. In light of limited oil current state of diesel engine engineering and technol- reserves and the discussion of predicted climate ogy. The impetus to publish a Handbook of Diesel change, development work continues to concentrate Engines grew out of ruminations on Rudolf Diesel’s on reducing fuel consumption and utilizing alternative transformation of his idea for a rational heat engine fuels while keeping exhaust as clean as possible as well into reality more than 100 years ago. Once the patent as further increasing diesel engine power density and was filed in 1892 and work on his engine commenced enhancing operating performance.

Biofuels

Biofuels PDF Author: Mansour Al Qubeissi
Publisher: BoD – Books on Demand
ISBN: 1789855357
Category : Science
Languages : en
Pages : 189

Book Description
Amongst concerns about climate change, energy security decline and depletion of fossil fuels, this book explores the high importance of and interests in alternative energy resources. Many studies have shown that biomass fuels are sustainable, environmentally friendly and can be the most appropriate replacement to the depleting crude oil. Additionally, they can expand green landscapes, create new job opportunities, be directly utilised in standard power systems and improve combustion performance. Biomass fuels can be limited due to production cost and competition with food. Therefore, plant and food wastes play an important role in reducing these costs and recycling dump bio-materials. Production of biofuels from non-food biomass has emerged as a sustainable option to tackle the problems associated with growing demands for energy.

Motor Gasolines

Motor Gasolines PDF Author:
Publisher:
ISBN:
Category : Gasoline
Languages : en
Pages : 80

Book Description


Fundamentals of Combustion Processes

Fundamentals of Combustion Processes PDF Author: Sara McAllister
Publisher: Springer Science & Business Media
ISBN: 1441979433
Category : Science
Languages : en
Pages : 315

Book Description
Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Internal Combustion Engine Fundamentals

Internal Combustion Engine Fundamentals PDF Author: John B. Heywood
Publisher: McGraw-Hill Education
ISBN: 9780071004992
Category : Internal combustion engines
Languages : en
Pages : 930

Book Description
This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.

Engineering Fundamentals of the Internal Combustion Engine

Engineering Fundamentals of the Internal Combustion Engine PDF Author: Willard W. Pulkrabek
Publisher: Pearson
ISBN: 9781292027296
Category : Internal combustion engines
Languages : en
Pages : 485

Book Description
This applied thermoscience text explores the basic principles and applications of various types of internal combustion engines, with a major emphasis on reciprocating engines.

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309373913
Category : Science
Languages : en
Pages : 812

Book Description
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.