Uranium and Plutonium Isotopic Analysis Using MGA+ PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Uranium and Plutonium Isotopic Analysis Using MGA+ PDF full book. Access full book title Uranium and Plutonium Isotopic Analysis Using MGA+ by . Download full books in PDF and EPUB format.

Uranium and Plutonium Isotopic Analysis Using MGA+

Uranium and Plutonium Isotopic Analysis Using MGA+ PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Lawrence Livermore National Laboratory develops sophisticated gamma-ray analysis codes for the isotopic analysis of nuclear materials based on the principles used in the original MultiGroup Analysis (MGA) code. Over the years, the MGA methodology has been upgraded and expanded far beyond its original capabilities and is now comprised of a suite of codes known as MGA++. The early MGA code analyzed Pu gamma-ray data collected with high-purity germanium (HPGe) detectors to yield Pu isotopic ratios. While the original MGA code relied solely on the lower-energy gamma rays (around 100 keV), the most recent addition to the MGA++ code suite, MGAHI, analyzes Pu data using higher-energy gamma rays (200 keV and higher) and is particulatly useful for Pu samples - that are enclosed in thick-walled containers. The MGA++ suite also includes capabilities to perform U isotopic analysis on data collected with either HPGe or cadmium-zinc-tellutide (CZT) detectors. These codes are commercially available and are known as U235 and CZTU, respectively. A graphical user interface has also been developed for viewing the data and the fitting procedure. In addition, we are developing new codes that will integrate into the MGA++ suite. These will include Pu isotopic analysis capabilities for data collected with CZT detectors, U isotopic analysis with HPGe detectors which utilizes only higher energy gamma rays, and isotopic analyses on mixtures of Pu and U.

Uranium and Plutonium Isotopic Analysis Using MGA+

Uranium and Plutonium Isotopic Analysis Using MGA+ PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Lawrence Livermore National Laboratory develops sophisticated gamma-ray analysis codes for the isotopic analysis of nuclear materials based on the principles used in the original MultiGroup Analysis (MGA) code. Over the years, the MGA methodology has been upgraded and expanded far beyond its original capabilities and is now comprised of a suite of codes known as MGA++. The early MGA code analyzed Pu gamma-ray data collected with high-purity germanium (HPGe) detectors to yield Pu isotopic ratios. While the original MGA code relied solely on the lower-energy gamma rays (around 100 keV), the most recent addition to the MGA++ code suite, MGAHI, analyzes Pu data using higher-energy gamma rays (200 keV and higher) and is particulatly useful for Pu samples - that are enclosed in thick-walled containers. The MGA++ suite also includes capabilities to perform U isotopic analysis on data collected with either HPGe or cadmium-zinc-tellutide (CZT) detectors. These codes are commercially available and are known as U235 and CZTU, respectively. A graphical user interface has also been developed for viewing the data and the fitting procedure. In addition, we are developing new codes that will integrate into the MGA++ suite. These will include Pu isotopic analysis capabilities for data collected with CZT detectors, U isotopic analysis with HPGe detectors which utilizes only higher energy gamma rays, and isotopic analyses on mixtures of Pu and U.

Plutonium and Uranium Isotopic Analysis

Plutonium and Uranium Isotopic Analysis PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Lawrence Livermore National Laboratory develops sophisticated gamma-ray analysis codes for isotopic determinations of nuclear materials based on the principles of the MultiGroup Analysis (MGA). MGA methodology has been upgraded and expanded and is now comprised of a suite of codes known as MGA++. A graphical user interface has also been developed for viewing the data and the fitting procedure. The code suite provides plutonium and uranium isotopic analysis for data collected with high-purity germanium planar and/or coaxial detector systems. The most recent addition to the MGA++ code suite, MGAHI, analyzes Pu data using higher-energy gamma rays (200 keV and higher) and is particularly useful for Pu samples that are enclosed in thick-walled containers. Additionally, the code suite can perform isotopic analysis of uranium spectra collected with cadmium-zinc-telluride (CZT) detectors. We are currently developing new codes with will integrate into the MGA++ suite. These will include Pu isotopic analysis capabilities for data collected with CZT detectors, and U isotopic analysis with high-purity germanium detectors, which utilizes only higher energy gamma rays. Future development of MGA++ will include a capability for isotopic analyses on mixtures of Pu and U.

High-resolution Gamma-ray Isotopic Measurements of Uranium Plutonium Samples at IPPE in Support of Physical Inventory Taking Activities

High-resolution Gamma-ray Isotopic Measurements of Uranium Plutonium Samples at IPPE in Support of Physical Inventory Taking Activities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Measurement of various U and Pu samples by gamma-ray spectrometry were performed at the Institute of Physics and Power Engineering to support physical-inventory-taking activities under the Joint US-Russian MPC and A Program. The resulting data was analyzed by several different methods which included Canberra's MGA9.63 (Pu and MOX analysis) and MGAU (U analysis), EG and G Ortec's MGA++ (Pu and MOX analysis) and U235 (U analysis), and FRAM v2.2 (U and Pu analysis) provided by Los Alamos. The results indicate that all of these codes are capable of performing the isotopic analysis adequately. However, some additional modifications may be required to permit better measurement of some of the more unusual components in the Institute of Physics and Power Engineering (IPPE) inventory to meet the demands of inventory-taking activities.

Achievements in Testing of the MGA and FRAM Isotopic Software Codes Under the DOE

Achievements in Testing of the MGA and FRAM Isotopic Software Codes Under the DOE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
DOE/NNSA and IRSN collaborated on a study of gamma-ray instruments and analysis methods used to perform isotopic measurements of special nuclear materials. The two agencies agreed to collaborate on the project in response to inconsistencies that were found in the various versions of software and hardware used to determine the isotopic abundances of uranium and plutonium. IRSN used software developed internally to test the MGA and FRAM isotopic analysis codes for criteria used to stop data acquisition. The stop-criterion test revealed several unusual behaviors in both the MGA and FRAM software codes.

Measurement of Plutonium and Uranium Isotopic Abundances by Gamma-ray Spectrometry

Measurement of Plutonium and Uranium Isotopic Abundances by Gamma-ray Spectrometry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
The isotopic composition of plutonium and uranium is needed for purposes of sample confirmation, or for interpreting results from calorimeters or neutron-coincidence measurement instruments to determine nuclear material mass. The authors have developed measurement methods and computer codes utilizing high-resolution gamma-ray spectrometry to measure the relative isotopic abundances of plutonium and uranium in various forms nondestructively. The computer codes, known as MGA and MGAU, have unique analysis methodologies that the authors briefly describe in this paper.

Full Range MGA Plutonium Isotopic Analysis Using Single Ge Detector

Full Range MGA Plutonium Isotopic Analysis Using Single Ge Detector PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Gamma-Ray multi-group analysis code MGA developed at Lawrence Livermore National Laboratory has been widely used in the area of gamma-ray non-destructive plutonium assay. This plutonium isotopic analysis code de-convolutes the complicated, 100-keV x-ray and gamma-ray region to obtain the ratio of Pu isotopes. Calibration of the detector efficiency is not required, but is determined intrinsically from the measured spectra. The code can either analyze low-energy gamma-ray spectrum taken using a high-resolution HPGe detector for energies below 300 keV, or analyze the low-energy spectrum combined with a high-energy spectrum (up to 1 MeV) in the two-detector analysis mode. In the latter case, the use of two detectors has been mandated by the conflicting requirements: excellent resolution at low energies (characteristic of small planar detectors) with good high-energy efficiency (characteristic of coaxial detectors). Usually, a high-energy spectrum taken using a coaxial Ge detector will not provide sufficient energy resolution for 100-keV plutonium isotopic analysis, while the small planar used at low energies has inadequate high-energy efficiency. An optimized-geometry ORTEC HPGe detector has been developed which combines good energy resolution at 100 keV combined with acceptable high-energy ((almost equal to) 1 MeV) efficiency in a single detector. It has been used to gather spectra of both low- and high-energy regions of plutonium spectra simultaneously, for analysis by MGA in the two-detector mode. Five Pu gamma-ray calibration standard sources were used in this study of this special detector.

Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code

Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description
FRAM is the acronym for Fixed-energy Response-function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type.

Experience with a General Gamma-Ray Isotopic Analysis Approach

Experience with a General Gamma-Ray Isotopic Analysis Approach PDF Author: W. D. Ruhter
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The gamma-ray data analysis methodology originally developed for the MGA code to determine the relative detection efficiency curve may also be used to determine the relative amounts of the isotopes being measured. This analysis approach is based on the fact that the intensity of any given gamma ray from a sample is determined by the amount of the emitting isotope present in the sample, the emission probability for the gamma ray being measured, the sample self attenuation, the attenuation due to absorbers between the sample and detector, and the detector efficiency. An equation can be written that describes a measured gamma-ray peak intensity in terms of these parameters. By selecting appropriate gamma-ray peaks from the isotopes of interest, we can solve a set of equations for the values of the parameters in any particular measurement including the relative amounts of the selected isotopes. The equations representing the peak intensities are very nonlinear and require an iterative least squares method to solve. We have developed software to ensure that during the iterative process the parameters stay within their appropriate ranges and converge properly in solving the set of equations under various measurement conditions. We have utilized and reported on this approach for determining the plutonium isotopic abundances in samples enriched in Pu-238 and to determine the U-235 enrichment of uranium samples in thick-walled containers. Recently, we have used this approach to determine the plutonium isotopic abundances of plutonium samples in thick-walled containers. We will report on this most recent application, and how this general approach can be adapted quickly to any isotopic analysis problem.

Isotopic Analysis of Plutonium and Uranium by Mass Spectrometer

Isotopic Analysis of Plutonium and Uranium by Mass Spectrometer PDF Author: A. H. TURNBULL
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description


Determination of Uranium and Plutonium Concentrations and Isotopic Abundances

Determination of Uranium and Plutonium Concentrations and Isotopic Abundances PDF Author: B. F. Rider
Publisher:
ISBN:
Category : Plutonium
Languages : en
Pages : 60

Book Description