Author: James A. Jenkins
Publisher: Springer Science & Business Media
ISBN: 3642885632
Category : Mathematics
Languages : en
Pages : 176
Book Description
This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956.
Univalent Functions and Conformal Mapping
Author: James A. Jenkins
Publisher: Springer Science & Business Media
ISBN: 3642885632
Category : Mathematics
Languages : en
Pages : 176
Book Description
This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956.
Publisher: Springer Science & Business Media
ISBN: 3642885632
Category : Mathematics
Languages : en
Pages : 176
Book Description
This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956.
Univalent Functions
Author: P. L. Duren
Publisher: Springer Science & Business Media
ISBN: 9780387907956
Category : Mathematics
Languages : en
Pages : 416
Book Description
Publisher: Springer Science & Business Media
ISBN: 9780387907956
Category : Mathematics
Languages : en
Pages : 416
Book Description
Conformal Mapping
Author: Zeev Nehari
Publisher: Courier Corporation
ISBN: 0486145034
Category : Mathematics
Languages : en
Pages : 418
Book Description
Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.
Publisher: Courier Corporation
ISBN: 0486145034
Category : Mathematics
Languages : en
Pages : 418
Book Description
Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.
Geometric Theory of Functions of a Complex Variable
Author: Gennadiĭ Mikhaĭlovich Goluzin
Publisher: American Mathematical Soc.
ISBN: 9780821886557
Category : Functions of complex variables
Languages : en
Pages : 690
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886557
Category : Functions of complex variables
Languages : en
Pages : 690
Book Description
Univalent Functions and Teichmüller Spaces
Author: O. Lehto
Publisher: Springer Science & Business Media
ISBN: 1461386527
Category : Mathematics
Languages : en
Pages : 271
Book Description
This monograph grew out of the notes relating to the lecture courses that I gave at the University of Helsinki from 1977 to 1979, at the Eidgenossische Technische Hochschule Zurich in 1980, and at the University of Minnesota in 1982. The book presumably would never have been written without Fred Gehring's continuous encouragement. Thanks to the arrangements made by Edgar Reich and David Storvick, I was able to spend the fall term of 1982 in Minneapolis and do a good part of the writing there. Back in Finland, other commitments delayed the completion of the text. At the final stages of preparing the manuscript, I was assisted first by Mika Seppala and then by Jouni Luukkainen, who both had a grant from the Academy of Finland. I am greatly indebted to them for the improvements they made in the text. I also received valuable advice and criticism from Kari Astala, Richard Fehlmann, Barbara Flinn, Fred Gehring, Pentti Jarvi, Irwin Kra, Matti Lehtinen, I1ppo Louhivaara, Bruce Palka, Kurt Strebel, Kalevi Suominen, Pekka Tukia and Kalle Virtanen. To all of them I would like to express my gratitude. Raili Pauninsalo deserves special thanks for her patience and great care in typing the manuscript. Finally, I thank the editors for accepting my text in Springer-Verlag's well known series. Helsinki, Finland June 1986 Olli Lehto Contents Preface. ... v Introduction ...
Publisher: Springer Science & Business Media
ISBN: 1461386527
Category : Mathematics
Languages : en
Pages : 271
Book Description
This monograph grew out of the notes relating to the lecture courses that I gave at the University of Helsinki from 1977 to 1979, at the Eidgenossische Technische Hochschule Zurich in 1980, and at the University of Minnesota in 1982. The book presumably would never have been written without Fred Gehring's continuous encouragement. Thanks to the arrangements made by Edgar Reich and David Storvick, I was able to spend the fall term of 1982 in Minneapolis and do a good part of the writing there. Back in Finland, other commitments delayed the completion of the text. At the final stages of preparing the manuscript, I was assisted first by Mika Seppala and then by Jouni Luukkainen, who both had a grant from the Academy of Finland. I am greatly indebted to them for the improvements they made in the text. I also received valuable advice and criticism from Kari Astala, Richard Fehlmann, Barbara Flinn, Fred Gehring, Pentti Jarvi, Irwin Kra, Matti Lehtinen, I1ppo Louhivaara, Bruce Palka, Kurt Strebel, Kalevi Suominen, Pekka Tukia and Kalle Virtanen. To all of them I would like to express my gratitude. Raili Pauninsalo deserves special thanks for her patience and great care in typing the manuscript. Finally, I thank the editors for accepting my text in Springer-Verlag's well known series. Helsinki, Finland June 1986 Olli Lehto Contents Preface. ... v Introduction ...
Conformal Maps And Geometry
Author: Dmitry Beliaev
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240
Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240
Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Univalent Functions and conformal mapping
Handbook of Complex Analysis
Author: Reiner Kuhnau
Publisher: Elsevier
ISBN: 0080532810
Category : Mathematics
Languages : en
Pages : 549
Book Description
Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)
Publisher: Elsevier
ISBN: 0080532810
Category : Mathematics
Languages : en
Pages : 549
Book Description
Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)
Handbook of Conformal Mappings and Applications
Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1351718738
Category : Mathematics
Languages : en
Pages : 943
Book Description
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.
Publisher: CRC Press
ISBN: 1351718738
Category : Mathematics
Languages : en
Pages : 943
Book Description
The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.
Applied and Computational Complex Analysis, Volume 1
Author: Peter Henrici
Publisher: John Wiley & Sons
ISBN: 9780471608417
Category : Mathematics
Languages : en
Pages : 704
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Publisher: John Wiley & Sons
ISBN: 9780471608417
Category : Mathematics
Languages : en
Pages : 704
Book Description
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.