Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation PDF full book. Access full book title Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation by Marc Tupin. Download full books in PDF and EPUB format.

Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation

Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation PDF Author: Marc Tupin
Publisher:
ISBN:
Category : Corrosion
Languages : en
Pages : 41

Book Description
The irradiation damage in the fuel cladding material is mainly caused by the neutron flux resulting from the fission reactions occurring in the fuel. From an experimental point of view, the neutrons have the disadvantage to activate materials by neutron capture rendering them difficult to handle. To avoid these constraints inherent in the handling of radioactive material, the radiation effects on the corrosion resistance of zirconium alloys can be studied by irradiating the materials with ions. A new experimental approach using ion irradiation was performed in the Microscopy and Irradiation Damage Studies Laboratory of the CEA in Saclay, with the aim to study more specifically the influence of the irradiation damages in the oxide on the corrosion rate of the zirconium alloys. This study was, moreover, focused on a particular distribution of defects in the oxide layer, basically, localised close to the metal/oxide interface. From the results of the irradiation of the metal/oxide interface, it was clearly shown that, whatever the incident ion, the irradiation of the internal interface results in a significant increase of the oxygen diffusion flux ratios between the most irradiated Zircaloy-4 and the unirradiated one, whereas that of the oxide formed on M5TM induces a big decrease of the oxygen diffusion flux in the film. These effects are less marked with helium ions compared to protons (M5TM is a trademark of AREVA NP registered in the United States and in other countries). Finally, the oxide irradiation impact on the oxygen diffusion through the layer could explain the corrosion acceleration factor observed on Zy4 during the first cycles of irradiation, but cannot alone explain observed corrosion accelerations under high burn-up conditions. The discussion on the oxide irradiation effects puts forward the probable role of the residual charge left by ion implantation.

Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation

Understanding of Corrosion Mechanisms of Zirconium Alloys After Irradiation PDF Author: Marc Tupin
Publisher:
ISBN:
Category : Corrosion
Languages : en
Pages : 41

Book Description
The irradiation damage in the fuel cladding material is mainly caused by the neutron flux resulting from the fission reactions occurring in the fuel. From an experimental point of view, the neutrons have the disadvantage to activate materials by neutron capture rendering them difficult to handle. To avoid these constraints inherent in the handling of radioactive material, the radiation effects on the corrosion resistance of zirconium alloys can be studied by irradiating the materials with ions. A new experimental approach using ion irradiation was performed in the Microscopy and Irradiation Damage Studies Laboratory of the CEA in Saclay, with the aim to study more specifically the influence of the irradiation damages in the oxide on the corrosion rate of the zirconium alloys. This study was, moreover, focused on a particular distribution of defects in the oxide layer, basically, localised close to the metal/oxide interface. From the results of the irradiation of the metal/oxide interface, it was clearly shown that, whatever the incident ion, the irradiation of the internal interface results in a significant increase of the oxygen diffusion flux ratios between the most irradiated Zircaloy-4 and the unirradiated one, whereas that of the oxide formed on M5TM induces a big decrease of the oxygen diffusion flux in the film. These effects are less marked with helium ions compared to protons (M5TM is a trademark of AREVA NP registered in the United States and in other countries). Finally, the oxide irradiation impact on the oxygen diffusion through the layer could explain the corrosion acceleration factor observed on Zy4 during the first cycles of irradiation, but cannot alone explain observed corrosion accelerations under high burn-up conditions. The discussion on the oxide irradiation effects puts forward the probable role of the residual charge left by ion implantation.

Understanding of Corrosion Mechanisms After Irradiation

Understanding of Corrosion Mechanisms After Irradiation PDF Author: Marc Tupin
Publisher:
ISBN:
Category : Solids
Languages : en
Pages : 33

Book Description
Irradiation damage in fuel cladding material is mainly caused by the neutron flux that results from fission reactions occurring in the fuel. To avoid the constraints inherent in handling radioactive material, the irradiation effects on the corrosion resistance of zirconium alloys can be studied by irradiating the materials with ions. We performed an original experiment using ion irradiation to more specifically study the influence of irradiation damage in the oxide on the corrosion rate of M5®. It has been established that irradiation with a 1.3-MeV helium ion at a fluence of 1017 cm-2 results in significant modifications of oxide properties, oxygen diffusion flux, and oxidation kinetics, as evidenced by Raman spectroscopy, secondary ion mass spectrometry (SIMS) analyses, and measurements of mass gains. A newly identified Raman vibration band at 712 cm-1 was linked to the presence of irradiation defects and allowed the evolution of their concentrations to be followed. The oxygen diffusion flux was significantly reduced after irradiation partly due to a surface concentration decrease of oxygen. The defects remained present in the oxide after 100 days of annealing in pressurized water reactor (PWR) conditions and were thus very stable in PWR conditions, which probably means that these defects would be stable in the reactor. According to the kinetics and in agreement with the results obtained by SIMS analyses, the oxidation rate was significantly reduced after ion irradiation, and this effect remained beyond 100 days in agreement with the high stability of irradiation defects in PWR conditions. An original model described quite well the oxidation kinetic results.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: Gerry D. Moan
Publisher: ASTM International
ISBN: 0803128959
Category : Nuclear fuel claddings
Languages : en
Pages : 891

Book Description
Annotation The 41 papers of this proceedings volume were first presented at the 13th symposium on Zirconium in the Nuclear Industry held in Annecy, France in June of 2001. Many of the papers are devoted to material related issues, corrosion and hydriding behavior, in-reactor studies, and the behavior and properties of Zr alloys used in storing spent fuel. Some papers report on studies of second phase particles, irradiation creep and growth, and material performance during loss of coolant and reactivity initiated accidents. Annotation copyrighted by Book News, Inc., Portland, OR.

Mechanistic Understanding of Irradiation-induced Corrosion of Zirconium Alloys in Nuclear Power Plants

Mechanistic Understanding of Irradiation-induced Corrosion of Zirconium Alloys in Nuclear Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description
Failures in the basic materials used in nuclear power plants continue to be costly and insidious, despite increasing industry vigilance to catch failures before they degrade safety. For instance, the overall costs to the US industry from materials problems could amount to as much as $10 billion annually. Moreover, estimates indicate that the cost of a pipe failure in a nuclear plant is one hundred times greater than the cost of a similar failure in a coal-fired plant. There are important practical stimuli and much scope for further understanding of the effects of irradiation on Zr-alloys (and other materials used in nuclear installations) by careful experimentation. Moreover, these studies need to address the effect of irradiation on all components of heterogeneous systems: the metal, the oxide and the environment, and especially those processes recurring at the interphases between these components. The present paper is aimed at providing specialists with some systematic information on the subject and with important considerations on the key items for further experimentation.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: George P. Sabol
Publisher: ASTM International
ISBN: 0803124066
Category : Nuclear fuel claddings
Languages : en
Pages : 907

Book Description


Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014

Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Corrosion Behavior of Irradiated Zircaloy

Corrosion Behavior of Irradiated Zircaloy PDF Author: RB. Adamson
Publisher:
ISBN:
Category : Microchemistry
Languages : en
Pages : 19

Book Description
There is ample evidence in the literature of the effects of reactor irradiation on the microstructure and corrosion behavior of zirconium alloys. Specifically, it has been shown that boiling water reactor (BWR) irradiation generally induces nodular corrosion and causes marked changes in precipitate structure and composition. The purpose of this study is to determine the effects of irradiation-induced microstructural changes on post-irradiation corrosion behavior and to gain insight into the operating in-reactor corrosion mechanisms.

Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation

Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation PDF Author: Joshua Samuel Bowman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In the operation of a nuclear reactor, the performance of the fuel cladding is critical to ensuring safe and reliable operation of the reactor. The current generation of Light Water Reactors utilizes claddings made from zirconium alloys. The material used for nuclear reactors must be able to withstand temperatures above 3000C while also being exposed to water, high pressures, and radiation. During operation, the zirconium cladding corrodes and picks up hydrogen which can adversely affect its performance. The corrosion mechanisms at work have yet to be fully characterized, especially the influence of irradiation. In order to better understand the mechanisms at work and characterize the behavior of zirconium alloys under reactor conditions, the Mechanistic Understanding of Zirconium Alloy Corrosion (MUZIC) consortium focused on the autoclave corrosion (MUZIC-1) and hydrogen pickup (MUZIC-2) outside of irradiation. The MUZIC-3 effort focuses on corrosion under irradiation. While it would be optimal to test reactor-irradiated samples, the difficulties posed by irradiating, corrosion testing, and examining these samples makes ion irradiation a more appealing manner of irradiation. Using doses and temperatures adjusted for substitution of protons for neutron radiation, this experiment seeks to characterize the effects of irradiation on the base metal, oxide layer, and water, both separately and jointly, on the corrosion of zirconium alloys. In this thesis, the beginning stages of this project, part of MUZIC-3, are presented. This involves verification of the effect of proton irradiation (which is used to represent neutron irradiation) on the base metal and characterization of the irradiated samples. The corrosion testing of this irradiated material will provide a reference for the effect of irradiation induced microstructure changes to the base metal on corrosion. In order to characterize the samples, chemical analyses and observations on crystallinity of secondary phase particles are needed. Along with the analysis of second-phase precipitates, assessment of dislocation loops to observe similarities between different radiation types is also required. Accordingly, samples were irradiated with charged particles (protons and zirconium ions) at the Michigan Ion Beam Laboratory and focused ion beam samples were prepared for transmission electron microscopy examination. The microstructure of the base metal is examined for a range of doses and irradiation temperatures and compared to the microstructure created under neutron irradiation as a preliminary to corrosion testing of irradiated samples. The results are discussed in light of existing literature.

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications PDF Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 673

Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Studies Regarding Corrosion Mechanisms in Zirconium Alloys

Studies Regarding Corrosion Mechanisms in Zirconium Alloys PDF Author: M. Preuss
Publisher:
ISBN:
Category : Corrosion mechanisms
Languages : en
Pages : 23

Book Description
Understanding the key corrosion mechanisms in a light water reactor primary water environment is critical to developing and exploiting improved zirconium alloy fuel cladding. In this paper, we report recent research highlights from a new collaborative research programme involving 3 U.K. universities and 5 partners from the nuclear industry. A major part of our strategy is to use the most advanced analytical tools to characterise the oxide and metal/oxide interface microstructure, residual stresses, as well as the transport properties of the oxide. These techniques include three-dimensional atom probe (3DAP), advanced transmission electron microscopy (TEM), synchrotron X-ray diffraction, Raman spectroscopy, and in situ electro-impedance spectroscopy. Synchrotron X-ray studies have enabled the characterisation of stresses, tetragonal phase fraction, and texture in the oxide as well as the stresses in the metal substrate. It was found that in the thick oxide (here, Optimized-ZIRLO, a trademark of the Westinghouse Electric Company, tested at 415°C in steam) a significant stress profile can be observed, which cannot be explained by metal substrate creep alone but that local delamination of the oxide layers due to crack formation must also play an important role. It was also found that the oxide stresses in the monoclinic and tetragonal phases grown on Zircaloy-4 (autoclave testing at 360°C) first relax during the pre-transition stage. Just before transition, the compressive stress in the monoclinic phase suddenly rises, which is interpreted as indirect evidence of significant tetragonal to monoclinic phase transformation taking place at this stage. TEM studies of pre- and post-transition oxides grown on ZIRLO, a trademark of the Westinghouse Electric Company, have used Fresnel contrast imaging to identify nano-sized pores along the columnar grain boundaries that form a network interconnected once the material goes through transition. The development of porosity during transition was further confirmed by in situ electrochemical impedance spectroscopy (EIS) studies. 3DAP analysis was used to identify a ZrO sub-oxide layer at the metal/oxide interface and to establish its three-dimensional morphology. It was possible to demonstrate that this sub-oxide structure develops with time and changes dramatically around transition. This observation was further confirmed by in situ EIS studies, which also suggest thinning of the sub-oxide/barrier layer around transition. Finally, 3DAP analysis was used to characterise segregation of alloying elements near the metal/oxide interface and to establish that the corroding metal near the interface (in this case ZIRLO) after 100 days at 360°C displays a substantially different chemistry and microstructure compared to the base alloy with Fe segregating to the Zr/ZrO interface.