Author: Richard Gott
Publisher: SAGE
ISBN: 1446239454
Category : Education
Languages : en
Pages : 210
Book Description
The basic understanding which underlies scientific evidence - ideas such as the structure of experiments, causality, repeatability, validity and reliability- is not straightforward. But these ideas are needed to judge evidence in school science, in physics or chemistry or biology or psychology, in undergraduate science, and in understanding everyday issues to do with science. It is essential to be able to be critical of scientific evidence. The authors clearly set out the principles of investigation so that the reader will be confident in questioning the experts, making an informed choice or arriving at in informed opinion. The book is intended for a wide range of readers including those who want to: } collect their own evidence } be able to question and judge a wide range of science-based issues that we come across in the press or other media in everyday life } teach others how to understand evidence. This book has been developed from the authors′ work with first year undergraduates in a combined science course and in primary teacher training for science specialists. It is suitable for students training as primary science specialists, and also for ′A′ level and first-year undergraduates in science and science-related subjects.
Understanding and Using Scientific Evidence
Author: Richard Gott
Publisher: SAGE
ISBN: 1446239454
Category : Education
Languages : en
Pages : 210
Book Description
The basic understanding which underlies scientific evidence - ideas such as the structure of experiments, causality, repeatability, validity and reliability- is not straightforward. But these ideas are needed to judge evidence in school science, in physics or chemistry or biology or psychology, in undergraduate science, and in understanding everyday issues to do with science. It is essential to be able to be critical of scientific evidence. The authors clearly set out the principles of investigation so that the reader will be confident in questioning the experts, making an informed choice or arriving at in informed opinion. The book is intended for a wide range of readers including those who want to: } collect their own evidence } be able to question and judge a wide range of science-based issues that we come across in the press or other media in everyday life } teach others how to understand evidence. This book has been developed from the authors′ work with first year undergraduates in a combined science course and in primary teacher training for science specialists. It is suitable for students training as primary science specialists, and also for ′A′ level and first-year undergraduates in science and science-related subjects.
Publisher: SAGE
ISBN: 1446239454
Category : Education
Languages : en
Pages : 210
Book Description
The basic understanding which underlies scientific evidence - ideas such as the structure of experiments, causality, repeatability, validity and reliability- is not straightforward. But these ideas are needed to judge evidence in school science, in physics or chemistry or biology or psychology, in undergraduate science, and in understanding everyday issues to do with science. It is essential to be able to be critical of scientific evidence. The authors clearly set out the principles of investigation so that the reader will be confident in questioning the experts, making an informed choice or arriving at in informed opinion. The book is intended for a wide range of readers including those who want to: } collect their own evidence } be able to question and judge a wide range of science-based issues that we come across in the press or other media in everyday life } teach others how to understand evidence. This book has been developed from the authors′ work with first year undergraduates in a combined science course and in primary teacher training for science specialists. It is suitable for students training as primary science specialists, and also for ′A′ level and first-year undergraduates in science and science-related subjects.
Understanding, Explanation, and Scientific Knowledge
Author: Kareem Khalifa
Publisher: Cambridge University Press
ISBN: 1107195632
Category : Philosophy
Languages : en
Pages : 265
Book Description
The first comprehensive exploration of the nature and value of understanding, addressing burgeoning debates in epistemology and philosophy of science.
Publisher: Cambridge University Press
ISBN: 1107195632
Category : Philosophy
Languages : en
Pages : 265
Book Description
The first comprehensive exploration of the nature and value of understanding, addressing burgeoning debates in epistemology and philosophy of science.
Reproducibility and Replicability in Science
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257
Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257
Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Understanding Scientific Understanding
Author: Henk W. de Regt
Publisher: Oxford University Press
ISBN: 0190652918
Category : Philosophy
Languages : en
Pages : 321
Book Description
Putting scientific understanding center-stage within the study of scientific explanations, Understanding Scientific Understanding develops and defends a philosophical theory of scientific understanding that can describe and explain the historical variation of criteria for understanding actually employed by scientists. Book jacket.
Publisher: Oxford University Press
ISBN: 0190652918
Category : Philosophy
Languages : en
Pages : 321
Book Description
Putting scientific understanding center-stage within the study of scientific explanations, Understanding Scientific Understanding develops and defends a philosophical theory of scientific understanding that can describe and explain the historical variation of criteria for understanding actually employed by scientists. Book jacket.
Understanding Marijuana
Author: Mitch Earleywine
Publisher: Oxford University Press
ISBN: 019988143X
Category : Psychology
Languages : en
Pages : 342
Book Description
Marijuana is the world's most popular illicit drug, with hundreds of millions of regular users worldwide. One in three Americans has smoked pot at least once. The Drug Enforcement Agency estimates that Americans smoke five million pounds of marijuana each year. And yet marijuana remains largely misunderstood by both its advocates and its detractors. To some, marijuana is an insidious "stepping-stone" drug, enticing the inexperienced and paving the way to the inevitable abuse of harder drugs. To others, medical marijuana is an organic means of easing the discomfort or stimulating the appetite of the gravely ill. Others still view marijuana, like alcohol, as a largely harmless indulgence, dangerous only when used immoderately. All sides of the debate have appropriated the scientific evidence on marijuana to satisfy their claims. What then are we to make of these conflicting portrayals of a drug with historical origins dating back to 8,000 B.C.? Understanding Marijuana examines the biological, psychological, and societal impact of this controversial substance. What are the effects, for mind and body, of long-term use? Are smokers of marijuana more likely than non-users to abuse cocaine and heroine? What effect has the increasing potency of marijuana in recent years had on users and on use? Does our current legal policy toward marijuana make sense? Earleywine separates science from opinion to show how marijuana defies easy dichotomies. Tracing the medical and political debates surrounding marijuana in a balanced, objective fashion, this book will be the definitive primer on our most controversial and widely used illicit substance.
Publisher: Oxford University Press
ISBN: 019988143X
Category : Psychology
Languages : en
Pages : 342
Book Description
Marijuana is the world's most popular illicit drug, with hundreds of millions of regular users worldwide. One in three Americans has smoked pot at least once. The Drug Enforcement Agency estimates that Americans smoke five million pounds of marijuana each year. And yet marijuana remains largely misunderstood by both its advocates and its detractors. To some, marijuana is an insidious "stepping-stone" drug, enticing the inexperienced and paving the way to the inevitable abuse of harder drugs. To others, medical marijuana is an organic means of easing the discomfort or stimulating the appetite of the gravely ill. Others still view marijuana, like alcohol, as a largely harmless indulgence, dangerous only when used immoderately. All sides of the debate have appropriated the scientific evidence on marijuana to satisfy their claims. What then are we to make of these conflicting portrayals of a drug with historical origins dating back to 8,000 B.C.? Understanding Marijuana examines the biological, psychological, and societal impact of this controversial substance. What are the effects, for mind and body, of long-term use? Are smokers of marijuana more likely than non-users to abuse cocaine and heroine? What effect has the increasing potency of marijuana in recent years had on users and on use? Does our current legal policy toward marijuana make sense? Earleywine separates science from opinion to show how marijuana defies easy dichotomies. Tracing the medical and political debates surrounding marijuana in a balanced, objective fashion, this book will be the definitive primer on our most controversial and widely used illicit substance.
Scientific Knowledge and Its Social Problems
Author: Jerome R. Ravetz
Publisher: Routledge
ISBN: 1000159841
Category : Political Science
Languages : en
Pages : 417
Book Description
Science is continually confronted by new and difficult social and ethical problems. Some of these problems have arisen from the transformation of the academic science of the prewar period into the industrialized science of the present. Traditional theories of science are now widely recognized as obsolete. In Scientific Knowledge and Its Social Problems (originally published in 1971), Jerome R. Ravetz analyzes the work of science as the creation and investigation of problems. He demonstrates the role of choice and value judgment, and the inevitability of error, in scientific research. Ravetz's new introductory essay is a masterful statement of how our understanding of science has evolved over the last two decades.
Publisher: Routledge
ISBN: 1000159841
Category : Political Science
Languages : en
Pages : 417
Book Description
Science is continually confronted by new and difficult social and ethical problems. Some of these problems have arisen from the transformation of the academic science of the prewar period into the industrialized science of the present. Traditional theories of science are now widely recognized as obsolete. In Scientific Knowledge and Its Social Problems (originally published in 1971), Jerome R. Ravetz analyzes the work of science as the creation and investigation of problems. He demonstrates the role of choice and value judgment, and the inevitability of error, in scientific research. Ravetz's new introductory essay is a masterful statement of how our understanding of science has evolved over the last two decades.
Taking Science to School
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Science Literacy
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309447569
Category : Education
Languages : en
Pages : 167
Book Description
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
Publisher: National Academies Press
ISBN: 0309447569
Category : Education
Languages : en
Pages : 167
Book Description
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
Scientific Knowledge
Author: J.H. Fetzer
Publisher: Springer Science & Business Media
ISBN: 9400985584
Category : Science
Languages : en
Pages : 336
Book Description
With this defense of intensional realism as a philosophical foundation for understanding scientific procedures and grounding scientific knowledge, James Fetzer provides a systematic alternative to much of recent work on scientific theory. To Fetzer, the current state of understanding the 'laws' of nature, or the 'law-like' statements of scientific theories, appears to be one of philosophical defeat; and he is determined to overcome that defeat. Based upon his incisive advocacy of the single-case propensity interpretation of probability, Fetzer develops a coherent structure within which the central problems of the philosophy of science find their solutions. Whether the reader accepts the author's contentions may, in the end, depend upon ancient choices in the interpretation of experience and explanation, but there can be little doubt of Fetzer's spirited competence in arguing for setting ontology before epistemology, and within the analysis of language. To us, Fetzer's ambition is appealing, fusing, as he says, the substantive commitment of the Popperian with the conscientious sensitivity of the Hempelian to the technical precision required for justified explication. To Fetzer, science is the objective pursuit of fallible general knowledge. This innocent character ization, which we suppose most scientists would welcome, receives a most careful elaboration in this book; it will demand equally careful critical con sideration. Center for the Philosophy and ROBERT S. COHEN History of Science, MARX W. WARTOFSKY Boston University October 1981 v TABLE OF CONTENTS EDITORIAL PREFACE v FOREWORD xi ACKNOWLEDGEMENTS xv PART I: CAUSATION 1.
Publisher: Springer Science & Business Media
ISBN: 9400985584
Category : Science
Languages : en
Pages : 336
Book Description
With this defense of intensional realism as a philosophical foundation for understanding scientific procedures and grounding scientific knowledge, James Fetzer provides a systematic alternative to much of recent work on scientific theory. To Fetzer, the current state of understanding the 'laws' of nature, or the 'law-like' statements of scientific theories, appears to be one of philosophical defeat; and he is determined to overcome that defeat. Based upon his incisive advocacy of the single-case propensity interpretation of probability, Fetzer develops a coherent structure within which the central problems of the philosophy of science find their solutions. Whether the reader accepts the author's contentions may, in the end, depend upon ancient choices in the interpretation of experience and explanation, but there can be little doubt of Fetzer's spirited competence in arguing for setting ontology before epistemology, and within the analysis of language. To us, Fetzer's ambition is appealing, fusing, as he says, the substantive commitment of the Popperian with the conscientious sensitivity of the Hempelian to the technical precision required for justified explication. To Fetzer, science is the objective pursuit of fallible general knowledge. This innocent character ization, which we suppose most scientists would welcome, receives a most careful elaboration in this book; it will demand equally careful critical con sideration. Center for the Philosophy and ROBERT S. COHEN History of Science, MARX W. WARTOFSKY Boston University October 1981 v TABLE OF CONTENTS EDITORIAL PREFACE v FOREWORD xi ACKNOWLEDGEMENTS xv PART I: CAUSATION 1.
Scientific Understanding
Author: Henk W. de Regt
Publisher: University of Pittsburgh Pre
ISBN: 0822971240
Category : Science
Languages : en
Pages : 365
Book Description
To most scientists, and to those interested in the sciences, understanding is the ultimate aim of scientific endeavor. In spite of this, understanding, and how it is achieved, has received little attention in recent philosophy of science. Scientific Understanding seeks to reverse this trend by providing original and in-depth accounts of the concept of understanding and its essential role in the scientific process. To this end, the chapters in this volume explore and develop three key topics: understanding and explanation, understanding and models, and understanding in scientific practice. Earlier philosophers, such as Carl Hempel, dismissed understanding as subjective and pragmatic. They believed that the essence of science was to be found in scientific theories and explanations. In Scientific Understanding, the contributors maintain that we must also consider the relation between explanations and the scientists who construct and use them. They focus on understanding as the cognitive state that is a goal of explanation and on the understanding of theories and models as a means to this end. The chapters in this book highlight the multifaceted nature of the process of scientific research. The contributors examine current uses of theory, models, simulations, and experiments to evaluate the degree to which these elements contribute to understanding. Their analyses pay due attention to the roles of intelligibility, tacit knowledge, and feelings of understanding. Furthermore, they investigate how understanding is obtained within diverse scientific disciplines and examine how the acquisition of understanding depends on specific contexts, the objects of study, and the stated aims of research.
Publisher: University of Pittsburgh Pre
ISBN: 0822971240
Category : Science
Languages : en
Pages : 365
Book Description
To most scientists, and to those interested in the sciences, understanding is the ultimate aim of scientific endeavor. In spite of this, understanding, and how it is achieved, has received little attention in recent philosophy of science. Scientific Understanding seeks to reverse this trend by providing original and in-depth accounts of the concept of understanding and its essential role in the scientific process. To this end, the chapters in this volume explore and develop three key topics: understanding and explanation, understanding and models, and understanding in scientific practice. Earlier philosophers, such as Carl Hempel, dismissed understanding as subjective and pragmatic. They believed that the essence of science was to be found in scientific theories and explanations. In Scientific Understanding, the contributors maintain that we must also consider the relation between explanations and the scientists who construct and use them. They focus on understanding as the cognitive state that is a goal of explanation and on the understanding of theories and models as a means to this end. The chapters in this book highlight the multifaceted nature of the process of scientific research. The contributors examine current uses of theory, models, simulations, and experiments to evaluate the degree to which these elements contribute to understanding. Their analyses pay due attention to the roles of intelligibility, tacit knowledge, and feelings of understanding. Furthermore, they investigate how understanding is obtained within diverse scientific disciplines and examine how the acquisition of understanding depends on specific contexts, the objects of study, and the stated aims of research.