Nanoscale Energy Transport PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nanoscale Energy Transport PDF full book. Access full book title Nanoscale Energy Transport by LIAO. Download full books in PDF and EPUB format.

Nanoscale Energy Transport

Nanoscale Energy Transport PDF Author: LIAO
Publisher: IOP Publishing Limited
ISBN: 9780750317368
Category : Energy conversion
Languages : en
Pages : 440

Book Description
This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.

Nanoscale Energy Transport

Nanoscale Energy Transport PDF Author: LIAO
Publisher: IOP Publishing Limited
ISBN: 9780750317368
Category : Energy conversion
Languages : en
Pages : 440

Book Description
This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.

Experimental Micro/Nanoscale Thermal Transport

Experimental Micro/Nanoscale Thermal Transport PDF Author: Xinwei Wang
Publisher: John Wiley & Sons
ISBN: 1118007441
Category : Technology & Engineering
Languages : en
Pages : 278

Book Description
This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials.

Molecular Dynamics

Molecular Dynamics PDF Author: Lichang Wang
Publisher: BoD – Books on Demand
ISBN: 9535104438
Category : Mathematics
Languages : en
Pages : 440

Book Description
Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This first book begins with a general description of underlying theories of molecular dynamics simulations and provides extensive coverage of molecular dynamics simulations in nanotechnology and energy. Coverage of this book includes: Recent advances of molecular dynamics theory Formation and evolution of nanoparticles of up to 106 atoms Diffusion and dissociation of gas and liquid molecules on silicon, metal, or metal organic frameworks Conductivity of ionic species in solid oxides Ion solvation in liquid mixtures Nuclear structures

Ultrafast Photonics

Ultrafast Photonics PDF Author: A. Miller
Publisher: CRC Press
ISBN: 0429524935
Category : Science
Languages : en
Pages : 328

Book Description
Ultrafast photonics has become an interdisciplinary topic of high international research interest because of the spectacular development of compact and efficient lasers producing optical pulses with durations in the femtosecond time domain. Present day long-haul telecommunications systems are almost entirely based on the transmission of short burst

Ultrafast Magnetization Dynamics

Ultrafast Magnetization Dynamics PDF Author: Simon Woodford
Publisher: Forschungszentrum Jülich
ISBN: 3893365362
Category : Magnetic fields
Languages : en
Pages : 137

Book Description


Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer PDF Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780

Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices

Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices PDF Author: Joao B. Sousa
Publisher: Elsevier
ISBN: 0323460976
Category : Science
Languages : en
Pages : 484

Book Description
Transport Phenomena in Micro- and Nanoscale Functional Materials and Devices offers a pragmatic view on transport phenomena for micro- and nanoscale materials and devices, both as a research tool and as a means to implant new functions in materials. Chapters emphasize transport properties (TP) as a research tool at the micro/nano level and give an experimental view on underlying techniques. The relevance of TP is highlighted through the interplay between a micro/nanocarrier's characteristics and media characteristics: long/short-range order and disorder excitations, couplings, and in energy conversions. Later sections contain case studies on the role of transport properties in functional nanomaterials. This includes transport in thin films and nanostructures, from nanogranular films, to graphene and 2D semiconductors and spintronics, and from read heads, MRAMs and sensors, to nano-oscillators and energy conversion, from figures of merit, micro-coolers and micro-heaters, to spincaloritronics. Presents a pragmatic description of electrical transport phenomena in micro- and nanoscale materials and devices from an experimental viewpoint Provides an in-depth overview of the experimental techniques available to measure transport phenomena in micro- and nanoscale materials Features case studies to illustrate how each technique works Highlights emerging areas of interest in micro- and nanomaterial transport phenomena, including spintronics

Preparation, Characterization, Properties, and Application of Nanofluid

Preparation, Characterization, Properties, and Application of Nanofluid PDF Author: I. M. Mahbubul
Publisher: William Andrew
ISBN: 012813299X
Category : Science
Languages : en
Pages : 375

Book Description
Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included. - Provides readers with tactics on nanofluid preparation methods, including how to improve their stability - Explores the effect of preparation method and stability on thermophysical and rheological properties of nanofluids - Assesses the available model and correlations used for nanofluid property calculation

Nanomaterials

Nanomaterials PDF Author: S. C. Singh
Publisher: John Wiley & Sons
ISBN: 3527646841
Category : Technology & Engineering
Languages : en
Pages : 793

Book Description
The first in-depth treatment of the synthesis, processing, and characterization of nanomaterials using lasers, ranging from fundamentals to the latest research results, this handy reference is divided into two main sections. After introducing the concepts of lasers, nanomaterials, nanoarchitectures and laser-material interactions in the first three chapters, the book goes on to discuss the synthesis of various nanomaterials in vacuum, gas and liquids. The second half discusses various nanomaterial characterization techniques involving lasers, from Raman and photoluminescence spectroscopies to light dynamic scattering, laser spectroscopy and such unusual techniques as laser photo acoustic, fluorescence correlation spectroscopy, ultrafast dynamics and laser-induced thermal pulses. The specialist authors adopt a practical approach throughout, with an emphasis on experiments, set-up, and results. Each chapter begins with an introduction and is uniform in covering the basic approaches, experimental setups, and dependencies of the particular method on different parameters, providing sufficient theory and modeling to understand the principles behind the techniques.

Thermoplasmonics

Thermoplasmonics PDF Author: Guillaume Baffou
Publisher: Cambridge University Press
ISBN: 1108307868
Category : Science
Languages : en
Pages : 310

Book Description
Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.