Author: H. S. M. Coxeter
Publisher: Courier Corporation
ISBN: 0486409198
Category : Mathematics
Languages : en
Pages : 301
Book Description
Absorbing essays demonstrate the charms of mathematics. Stimulating and thought-provoking treatment of geometry's crucial role in a wide range of mathematical applications, for students and mathematicians.
The Beauty of Geometry
Author: H. S. M. Coxeter
Publisher: Courier Corporation
ISBN: 0486409198
Category : Mathematics
Languages : en
Pages : 301
Book Description
Absorbing essays demonstrate the charms of mathematics. Stimulating and thought-provoking treatment of geometry's crucial role in a wide range of mathematical applications, for students and mathematicians.
Publisher: Courier Corporation
ISBN: 0486409198
Category : Mathematics
Languages : en
Pages : 301
Book Description
Absorbing essays demonstrate the charms of mathematics. Stimulating and thought-provoking treatment of geometry's crucial role in a wide range of mathematical applications, for students and mathematicians.
Twelve Geometric Essays
Author: Harold Scott Macdonald Coxeter
Publisher: Carbondale : Southern Illinois University Press
ISBN:
Category : Literary Collections
Languages : en
Pages : 300
Book Description
Publisher: Carbondale : Southern Illinois University Press
ISBN:
Category : Literary Collections
Languages : en
Pages : 300
Book Description
Mathematical People
Author: Donald Albers
Publisher: CRC Press
ISBN: 1439865175
Category : Mathematics
Languages : en
Pages : 409
Book Description
This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introdu
Publisher: CRC Press
ISBN: 1439865175
Category : Mathematics
Languages : en
Pages : 409
Book Description
This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introdu
Projective Geometry
Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 9780387406237
Category : Mathematics
Languages : en
Pages : 180
Book Description
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.
Publisher: Springer Science & Business Media
ISBN: 9780387406237
Category : Mathematics
Languages : en
Pages : 180
Book Description
In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.
The Man Who Saved Geometry
Author: Siobhan Roberts
Publisher: Princeton University Press
ISBN: 0691264740
Category : Biography & Autobiography
Languages : en
Pages : 416
Book Description
An illuminating biography of one of the greatest geometers of the twentieth century Driven by a profound love of shapes and symmetries, Donald Coxeter (1907–2003) preserved the tradition of classical geometry when it was under attack by influential mathematicians who promoted a more algebraic and austere approach. His essential contributions include the famed Coxeter groups and Coxeter diagrams, tools developed through his deep understanding of mathematical symmetry. The Man Who Saved Geometry tells the story of Coxeter’s life and work, placing him alongside history’s greatest geometers, from Pythagoras and Plato to Archimedes and Euclid—and it reveals how Coxeter’s boundless creativity reflects the adventurous, ever-evolving nature of geometry itself. With an incisive, touching foreword by Douglas R. Hofstadter, The Man Who Saved Geometry is an unforgettable portrait of a visionary mathematician.
Publisher: Princeton University Press
ISBN: 0691264740
Category : Biography & Autobiography
Languages : en
Pages : 416
Book Description
An illuminating biography of one of the greatest geometers of the twentieth century Driven by a profound love of shapes and symmetries, Donald Coxeter (1907–2003) preserved the tradition of classical geometry when it was under attack by influential mathematicians who promoted a more algebraic and austere approach. His essential contributions include the famed Coxeter groups and Coxeter diagrams, tools developed through his deep understanding of mathematical symmetry. The Man Who Saved Geometry tells the story of Coxeter’s life and work, placing him alongside history’s greatest geometers, from Pythagoras and Plato to Archimedes and Euclid—and it reveals how Coxeter’s boundless creativity reflects the adventurous, ever-evolving nature of geometry itself. With an incisive, touching foreword by Douglas R. Hofstadter, The Man Who Saved Geometry is an unforgettable portrait of a visionary mathematician.
Geometry
Author: John Willard Milnor
Publisher: American Mathematical Soc.
ISBN: 9780914098300
Category : Mathematics
Languages : en
Pages : 312
Book Description
This volume is the seventh in the series Collected Papers of John Milnor. Together with the preceding Volume VI, it contains all of Milnor's papers in dynamics, through the year 2012. Most of the papers are in holomorphic dynamics; however, there are two in real dynamics and one on cellular automata. Two of the papers are published here for the first time. The papers in this volume provide important and fundamental material in real and complex dynamical systems. Many have become classics, and have inspired further research in the field. Some of the questions addressed here continue to be important in current research. In some cases, there have been minor corrections or clarifications, as well as references to more recent work which answers questions raised by the author. The volume also includes an index to facilitate searching the book for specific topics.
Publisher: American Mathematical Soc.
ISBN: 9780914098300
Category : Mathematics
Languages : en
Pages : 312
Book Description
This volume is the seventh in the series Collected Papers of John Milnor. Together with the preceding Volume VI, it contains all of Milnor's papers in dynamics, through the year 2012. Most of the papers are in holomorphic dynamics; however, there are two in real dynamics and one on cellular automata. Two of the papers are published here for the first time. The papers in this volume provide important and fundamental material in real and complex dynamical systems. Many have become classics, and have inspired further research in the field. Some of the questions addressed here continue to be important in current research. In some cases, there have been minor corrections or clarifications, as well as references to more recent work which answers questions raised by the author. The volume also includes an index to facilitate searching the book for specific topics.
Discrete Geometry and Symmetry
Author: Marston D. E. Conder
Publisher: Springer
ISBN: 331978434X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
Publisher: Springer
ISBN: 331978434X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
Catalog of Copyright Entries. Third Series
Author: Library of Congress. Copyright Office
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1510
Book Description
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1510
Book Description
Polytopes
Author: Tibor Bisztriczky
Publisher: Springer Science & Business Media
ISBN: 9401109249
Category : Mathematics
Languages : en
Pages : 515
Book Description
The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.
Publisher: Springer Science & Business Media
ISBN: 9401109249
Category : Mathematics
Languages : en
Pages : 515
Book Description
The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.
Applied Geometry and Discrete Mathematics
Author: Peter Gritzmann
Publisher: American Mathematical Soc.
ISBN: 9780821870839
Category : Mathematics
Languages : en
Pages : 660
Book Description
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's 65th birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics, education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honour of Klee's achievements, this volume presents more than 40 papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, this book shows how different branches of mathematics interact. It is a fitting tribute to one of the leading figures in discrete mathematics.
Publisher: American Mathematical Soc.
ISBN: 9780821870839
Category : Mathematics
Languages : en
Pages : 660
Book Description
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's 65th birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics, education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honour of Klee's achievements, this volume presents more than 40 papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, this book shows how different branches of mathematics interact. It is a fitting tribute to one of the leading figures in discrete mathematics.