Turbulent Combustion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Turbulent Combustion PDF full book. Access full book title Turbulent Combustion by Norbert Peters. Download full books in PDF and EPUB format.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Turbulent Partially Premixed Combustion

Turbulent Partially Premixed Combustion PDF Author: S. Ruan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Increasingly stringent regulation of pollutant emission has motivated the search for cleaner and more efficient combustion devices, which remain the primary means of power generation and propulsion for all kinds of transport. Fuel-lean premixed combustion technology has been identified to be a promising approach, despite many difficulties involve, notably issues concerning flame stability and ignitability. A partially premixed system has been introduced to remedy these problems, however, our understanding on this combustion mode needs to be greatly improved to realise its full potential. This thesis aims to further the understanding of various fundamental physical processes in turbulent partially premixed flames. DNS data of a laboratory-scale hydrogen turbulent jet lifted flame is analysed in this study. The partially premixed nature of this flame is established by examining the instantaneous and averaged reaction rates and the "Flame Index", which indicate premixed and diffusion burning modes coexisting. The behaviour of turbulent flame stretch and its relation to other physical processes, in particular the scalar-turbulence interaction, the effects of partial premixing on the displacement speed of iso-scalar surface and its correlation with the surface curvature are explored using DNS data. The scalar gradient alignment characteristics change from aligning with the most compressive strain to aligning with the most extensive one in regions of intensive heat release. This alignment change creates negative normal strain rate which can result in negative surface averaged tangential strain rate. The partial premixing affects the flame surface displacement speed through the mixture fraction dissipation rate and a second derivative in the mixture fraction space. The correlation of curvature and displacement speed is found to be negative in general and the effects of partial premixing act to reduce this negative correlation. The combined effects of the normal strain rate and the displacement speed/curvature correlation contribute to the negative mean flame stretch observed in the flame brush. Scalar dissipation rates (SDR) of the mixture fraction ẼZZ, progress variable Ẽcc and their cross dissipation rates (CDR) ẼcZ are identified as important quantities in the modelling of partially premixed flames. Their behaviours in the lifted flame stabilisation region are examined in a unified framework. It is found that SDR of mixture fraction is well below the quenching value in this region while SDR of progress variable is smaller than that in laminar flames. The CDR changes from weakly positive to negative at the flame leading edge due to the change in scalar gradient alignment characteristics. Axial and radial variation of these quantities are analysed and it is found that Ẽcc is an order of magnitude bigger than ẼZZ. ẼcZ is two orders of magnitude smaller than Ẽcc and it can be either positive or negative depending on local flow and flame conditions. Simple algebraic models show reasonable agreement compared to DNS when a suitable definition of c is used. Further statistics of the scalar gradients are presented and a presumed lognormal distribution is found to give reasonable results for their marginal PDFs and a bivariate lognormal distribution is a good approximation for their joint PDF. Four mean reaction rate closures based on presumed PDF and flamelets are assessed a priori using DNS data. The turbulent flame front structure is first compared with unstrained and strained laminar premixed and dif fusion flamelets. It is found that unstrained premixed flamelets give overall reasonable approximation in most parts of this flame. A joint PDF model which includes the correlation between mixture fraction and progress variable using a "copula" method shows excellent agreement with DNS results while their statistical independence does not hold in the burning regions of this partially premixed flame. The unstrained premixed flamelet with the correlated joint PDF method is identified to be the most appropriate model for the lifted jet flame calculation. This model is then used in the RANS simulation of turbulent jet lifted flames. A new model to include the contribution from diffusion burning and the effects of partial premixing due to SDR of mixture fraction is also identified and included in the calculation. These models are implemented in a commercial CFD code "Fluent" with user defined scalars and functions. It is found that both the correlated joint PDF model and the model accounting for the diffusive burning in partial premixing are important in order to accurately predict flame lift-off height compared to the experiments.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion PDF Author: Andrei Lipatnikov
Publisher: CRC Press
ISBN: 1466510250
Category : Science
Languages : en
Pages : 548

Book Description
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion PDF Author: Andrei Lipatnikov
Publisher: CRC Press
ISBN: 1466510242
Category : Science
Languages : en
Pages : 551

Book Description
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Modelling of Turbulent Premixed and Partially Premixed Combustion

Modelling of Turbulent Premixed and Partially Premixed Combustion PDF Author: V. K. Veera
Publisher:
ISBN:
Category : Science
Languages : en
Pages :

Book Description
Modelling of Turbulent Premixed and Partially Premixed Combustion.

Advanced Turbulent Combustion Physics and Applications

Advanced Turbulent Combustion Physics and Applications PDF Author: N. Swaminathan
Publisher: Cambridge University Press
ISBN: 1108497969
Category : Science
Languages : en
Pages : 485

Book Description
Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.

Turbulent Reacting Flows

Turbulent Reacting Flows PDF Author: P.A. Libby
Publisher: Springer
ISBN: 9783662312568
Category : Science
Languages : en
Pages : 246

Book Description


Investigation of Conditional Source-term Estimation Approach for Turbulent Partially Premixed Combustion Modelling

Investigation of Conditional Source-term Estimation Approach for Turbulent Partially Premixed Combustion Modelling PDF Author: Daniele Dovizio
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Book Description
Conditional Source-term Estimation (CSE) is a closure technique for modelling turbulent combustion phenomena. CSE uses the Conditional Moment Closure (CMC) hypothesis for closing chemical source terms: conditionally averaged chemical source terms are closed by conditional averaged scalars, which are obtained by inverting an integral equation, instead of solving transport equations (as in CMC). Since CSE has been successfully applied to both premixed and non-premixed configurations, it represents an attractive method for dealing with the more general and complex case of partially premixed combustion. The objectives of the present study are to (i) consolidate the premixed formulation of CSE through numerical simulations of a turbulent bluff body premixed flame; (ii) formulate, implement and test the Doubly conditional CSE (DCSE) in the context of partially premixed combustion; (iii) compare the DCSE predictions with well documented turbulent partially premixed flames. The canonical example of partially premixed flames is represented by turbulent lifted flames. A series of lifted turbulent jet flames is investigated in RANS by using DCSE. The DCSE calculations are successful in predicting the lift-off heights at three different conditions and reproducing many aspects of the flame structure in agreement with the experimental observations. The current results show that important aspects of the stabilization mechanism can be reproduced by the DCSE combustion model. The applicability of DCSE is further evaluated by applying this approach to a series of turbulent V-shaped flames for which experimental data is available. Premixed and stratified conditions are investigated. Overall, the agreement between numerical results and experimental findings is good, demonstrating the capability of DCSE to deal with partially premixed combustion. Future work includes implementation of CSE in LES and investigation of different fuels such as propane and biofuels.

Numerical Simulations of Partially Premixed Methane Combustion in Laminar and Turbulent Flows

Numerical Simulations of Partially Premixed Methane Combustion in Laminar and Turbulent Flows PDF Author: Hyderuddin Mohammad
Publisher:
ISBN:
Category : Laminar flow
Languages : en
Pages : 290

Book Description