Transport Properties in the Vicinity of Mott Insulators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transport Properties in the Vicinity of Mott Insulators PDF full book. Access full book title Transport Properties in the Vicinity of Mott Insulators by Cody Patrick Nave. Download full books in PDF and EPUB format.

Transport Properties in the Vicinity of Mott Insulators

Transport Properties in the Vicinity of Mott Insulators PDF Author: Cody Patrick Nave
Publisher:
ISBN:
Category :
Languages : en
Pages : 95

Book Description
Understanding the states in the vicinity of the Mott insulator is crucial to understanding both the physics of the transition between a Mott insulating phase and a metallic phase and the physics of the cuprate high-temperature superconductors. In this thesis, we start from the standard Mott insulating regime of the two dimensional Hubbard model. We then study the physics of nearby states where transport has been restored. First we consider doping of the Hubbard model in the strong coupling limit, i.e. the t-J model. Using the variational Monte Carlo technique, we study Gutzwiller projected states. In particular, studying the projected BCS quasiparticles, we calculate the renormalization of the quasipaticle current and the spectral weight. Both are investigated as a function of momentum and doping. Finally, we discuss the relation between this model and the cuprate superconductors. In the second half of this thesis, we return to the half-filled Hubbard model but now at intermediate values of U/t. In this regime, we study the spin liquid phase, a state that possibly lives between the Mott insulator and the normal metal. Motivated by the recently created organic compound r-(BEDT-TTF)2- Cu2(CN)3, we study a particular spin liquid where there is a spinon Fermi surface coupled to a U(1) gauge field. While still a charge insulator, this model has many metallic-like properties. We first develop a quantum Boltzmann equation for this model from which we calculate the spin resistivity and the more experimentally accessible thermal conductivity. We then proceed to consider spinon pairing and calculate the gauge field contribution to the spin susceptibility. We find that the theoretical result is consistent with experiments giving further evidence that at low temperatures this compound is described by this particular U(1) spin liquid.

Transport Properties in the Vicinity of Mott Insulators

Transport Properties in the Vicinity of Mott Insulators PDF Author: Cody Patrick Nave
Publisher:
ISBN:
Category :
Languages : en
Pages : 95

Book Description
Understanding the states in the vicinity of the Mott insulator is crucial to understanding both the physics of the transition between a Mott insulating phase and a metallic phase and the physics of the cuprate high-temperature superconductors. In this thesis, we start from the standard Mott insulating regime of the two dimensional Hubbard model. We then study the physics of nearby states where transport has been restored. First we consider doping of the Hubbard model in the strong coupling limit, i.e. the t-J model. Using the variational Monte Carlo technique, we study Gutzwiller projected states. In particular, studying the projected BCS quasiparticles, we calculate the renormalization of the quasipaticle current and the spectral weight. Both are investigated as a function of momentum and doping. Finally, we discuss the relation between this model and the cuprate superconductors. In the second half of this thesis, we return to the half-filled Hubbard model but now at intermediate values of U/t. In this regime, we study the spin liquid phase, a state that possibly lives between the Mott insulator and the normal metal. Motivated by the recently created organic compound r-(BEDT-TTF)2- Cu2(CN)3, we study a particular spin liquid where there is a spinon Fermi surface coupled to a U(1) gauge field. While still a charge insulator, this model has many metallic-like properties. We first develop a quantum Boltzmann equation for this model from which we calculate the spin resistivity and the more experimentally accessible thermal conductivity. We then proceed to consider spinon pairing and calculate the gauge field contribution to the spin susceptibility. We find that the theoretical result is consistent with experiments giving further evidence that at low temperatures this compound is described by this particular U(1) spin liquid.

Spectroscopy of Mott Insulators and Correlated Metals

Spectroscopy of Mott Insulators and Correlated Metals PDF Author: Atsushi Fujimori
Publisher: Springer Science & Business Media
ISBN: 3642578349
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.

Conductor Insulator Quantum Phase Transitions

Conductor Insulator Quantum Phase Transitions PDF Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583

Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.

Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition)

Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition) PDF Author: James K Freericks
Publisher: World Scientific
ISBN: 178326859X
Category : Science
Languages : en
Pages : 451

Book Description
Over the last 25 years, dynamical mean-field theory (DMFT) has emerged as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, this book presents the first comprehensive treatment of this ever-developing topic. Transport in Mutlilayered Nanostructures is varied and modern in its scope, and:A series of over 50 problems help develop the skills to allow readers to reach the level of being able to contribute to research. This book is suitable for an advanced graduate course in DMFT, and for individualized study by graduate students, postdoctoral fellows and advanced researchers wishing to enter the field.

Transport Properties and Quantum Phase Transitions in Ultrathin Films of Metals

Transport Properties and Quantum Phase Transitions in Ultrathin Films of Metals PDF Author: Nina Marković
Publisher:
ISBN:
Category :
Languages : en
Pages : 358

Book Description


Strongly Correlated Electrons in Two Dimensions

Strongly Correlated Electrons in Two Dimensions PDF Author: Sergey Kravchenko
Publisher: CRC Press
ISBN: 9814745383
Category : Science
Languages : en
Pages : 244

Book Description
The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.

Fundamentals of Thermoelectricity

Fundamentals of Thermoelectricity PDF Author: Kamran Behnia
Publisher: OUP Oxford
ISBN: 0191009903
Category : Science
Languages : en
Pages : 251

Book Description
What kind of information on the electrons' organisation in solids is yielded by measuring their thermoelectric response? Fundamentals of Thermoelectricity gives an account of our current understanding of thermoelectric phenomena in solids by presenting basic theoretical concepts and numerous experimental results. Many readers will be surprised to learn that even in the case of simple metals (considered to be domesticated long ago by the quantum theory of solids) our understanding lags far behind known experimental facts. The two theories of phonon drag, the positive Seebeck coefficient of noble metals, and the three-orders-of-magnitude gap between theory and experiment regarding the thermoelectric response of Bogoliubov quasi-particles of a superconductor are among the forgotten puzzles discussed in this book. Among other novelties, it contains an original discussion of the role of the de Broglie thermal wave-length in setting the magnitude of the thermoelectric response in Fermi liquids.

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition PDF Author: Florian Gebhard
Publisher: Springer
ISBN: 3540148582
Category : Technology & Engineering
Languages : en
Pages : 318

Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.

The Hubbard Model

The Hubbard Model PDF Author: Dionys Baeriswyl
Publisher: Springer Science & Business Media
ISBN: 1489910425
Category : Science
Languages : en
Pages : 408

Book Description
In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).

Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism PDF Author: Evgeny Y. Tsymbal
Publisher: CRC Press
ISBN: 1439803781
Category : Science
Languages : en
Pages : 797

Book Description
In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal