Author: Jeffrey B. Weiss
Publisher: Springer
ISBN: 3540752153
Category : Science
Languages : en
Pages : 268
Book Description
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
Transport and Mixing in Geophysical Flows
Author: Jeffrey B. Weiss
Publisher: Springer
ISBN: 3540752153
Category : Science
Languages : en
Pages : 268
Book Description
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
Publisher: Springer
ISBN: 3540752153
Category : Science
Languages : en
Pages : 268
Book Description
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
Transport and Mixing in Geophysical Flows
Author: Jeffrey B. Weiss
Publisher: Springer
ISBN: 9783540844273
Category : Science
Languages : en
Pages : 262
Book Description
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
Publisher: Springer
ISBN: 9783540844273
Category : Science
Languages : en
Pages : 262
Book Description
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
Particle-Laden Flow
Author: Bernard Geurts
Publisher: Springer Science & Business Media
ISBN: 1402062176
Category : Science
Languages : en
Pages : 409
Book Description
This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.
Publisher: Springer Science & Business Media
ISBN: 1402062176
Category : Science
Languages : en
Pages : 409
Book Description
This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.
The Handbook of Groundwater Engineering, Third Edition
Author: John H. Cushman
Publisher: CRC Press
ISBN: 1315354535
Category : Science
Languages : en
Pages : 1726
Book Description
This new edition adds several new chapters and is thoroughly updated to include data on new topics such as hydraulic fracturing, CO2 sequestration, sustainable groundwater management, and more. Providing a complete treatment of the theory and practice of groundwater engineering, this new handbook also presents a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the protection of groundwater, and the remediation of contaminated groundwater.
Publisher: CRC Press
ISBN: 1315354535
Category : Science
Languages : en
Pages : 1726
Book Description
This new edition adds several new chapters and is thoroughly updated to include data on new topics such as hydraulic fracturing, CO2 sequestration, sustainable groundwater management, and more. Providing a complete treatment of the theory and practice of groundwater engineering, this new handbook also presents a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the protection of groundwater, and the remediation of contaminated groundwater.
Transport Barriers and Coherent Structures in Flow Data
Author: George Haller
Publisher: Cambridge University Press
ISBN: 1009225170
Category : Science
Languages : en
Pages : 427
Book Description
Explore a wealth of proven mathematical methods for uncovering transport barriers in numerical, experimental and observational flow data.
Publisher: Cambridge University Press
ISBN: 1009225170
Category : Science
Languages : en
Pages : 427
Book Description
Explore a wealth of proven mathematical methods for uncovering transport barriers in numerical, experimental and observational flow data.
Stochastic Modelling in Physical Oceanography
Author: Robert Adler
Publisher: Springer Science & Business Media
ISBN: 1461224306
Category : Mathematics
Languages : en
Pages : 473
Book Description
The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.
Publisher: Springer Science & Business Media
ISBN: 1461224306
Category : Mathematics
Languages : en
Pages : 473
Book Description
The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.
Lagrangian Oceanography
Author: Sergey V. Prants
Publisher: Springer
ISBN: 3319530224
Category : Science
Languages : en
Pages : 285
Book Description
This book uses the Lagrangian approach, especially useful and convenient for studying large-scale transport and mixing in the ocean, to present a detailed view of ocean circulation. This approach focuses on simulations and on monitoring the trajectories of fluid particles, which are governed by advection equations. The first chapter of the book is devoted to dynamical systems theory methods, which provide the framework, methodology and key concepts for the Lagrangian approach. The book then moves on to an analysis of chaotic mixing and cross-stream transport in idealized models of oceanic meandering currents like the Gulfstream in the Atlantic, the Kuroshio in the Pacific, and Antarctic Circumpolar Current, after which the current state of physical oceanography is reviewed. The latter half of the book applies the techniques and methods already described in order to study eddies, currents, fronts and large-scale mixing and transport in the Far-Eastern seas and the north-western part of the Pacific Ocean. Finally, the book concludes with a discussion of Lagrangian simulation and monitoring of water contamination after the Fukushima disaster of 2011. The propagation of Fukushima-derived radionuclides, surface transport across the Kuroshio Extension current, and the role of mesoscale eddies in the transport of Fukushima-derived cesium isotopes in the ocean are examined, and a comparison of simulation results with actual measurements are presented.Written by some of the world leaders in the application of Lagrangian methods in oceanography, this title will be of benefit to the oceanographic community by presenting the necessary background of the Lagrangian approach in an accessible manner.
Publisher: Springer
ISBN: 3319530224
Category : Science
Languages : en
Pages : 285
Book Description
This book uses the Lagrangian approach, especially useful and convenient for studying large-scale transport and mixing in the ocean, to present a detailed view of ocean circulation. This approach focuses on simulations and on monitoring the trajectories of fluid particles, which are governed by advection equations. The first chapter of the book is devoted to dynamical systems theory methods, which provide the framework, methodology and key concepts for the Lagrangian approach. The book then moves on to an analysis of chaotic mixing and cross-stream transport in idealized models of oceanic meandering currents like the Gulfstream in the Atlantic, the Kuroshio in the Pacific, and Antarctic Circumpolar Current, after which the current state of physical oceanography is reviewed. The latter half of the book applies the techniques and methods already described in order to study eddies, currents, fronts and large-scale mixing and transport in the Far-Eastern seas and the north-western part of the Pacific Ocean. Finally, the book concludes with a discussion of Lagrangian simulation and monitoring of water contamination after the Fukushima disaster of 2011. The propagation of Fukushima-derived radionuclides, surface transport across the Kuroshio Extension current, and the role of mesoscale eddies in the transport of Fukushima-derived cesium isotopes in the ocean are examined, and a comparison of simulation results with actual measurements are presented.Written by some of the world leaders in the application of Lagrangian methods in oceanography, this title will be of benefit to the oceanographic community by presenting the necessary background of the Lagrangian approach in an accessible manner.
Introduction to Geophysical Fluid Dynamics
Author: Benoit Cushman-Roisin
Publisher: Academic Press
ISBN: 0080916783
Category : Science
Languages : en
Pages : 850
Book Description
Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)
Publisher: Academic Press
ISBN: 0080916783
Category : Science
Languages : en
Pages : 850
Book Description
Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)
Large Eddy Simulation of Complex Engineering and Geophysical Flows
Author: Boris Galperin
Publisher: Cambridge University Press
ISBN: 0521430097
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.
Publisher: Cambridge University Press
ISBN: 0521430097
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.
Micro and Macro Mixing
Author: Henning Bockhorn
Publisher: Springer Science & Business Media
ISBN: 3642045499
Category : Science
Languages : en
Pages : 345
Book Description
The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The mixing process is used as an essential step in nearly all processes of the chemical industry as well as the pharmaceutical and food ind- tries. Recent experimentally and theoretically based results from research work lead to a fairly good prediction of the velocity fields in differend kinds of mixers, where as predictions of simultaneously proceeding homogeneous chemical re- tions, are still not reliable in a similar way. Therefore the design of equipment for mixing processes is still derived from measurements of the so called “mixing time” which is related to the applied methods of measurement and the special - sign of the test equipment itself. The cooperation of 17 research groups was stimulated by improved modern methods for experimental research and visualization, for simulations and nume- cal calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. The research work was financed for a six years period within the recently finished Priority Program of the German Research Foundation (DFG) named “Analysis, modeling and numerical prediction of flow-mixig with and without chemical reactions (SPP 1141)”. The objective of the investigations was to improve the prediction of efficiencies and selectivities of chemical re- tions on macroscopic scale.
Publisher: Springer Science & Business Media
ISBN: 3642045499
Category : Science
Languages : en
Pages : 345
Book Description
The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The mixing process is used as an essential step in nearly all processes of the chemical industry as well as the pharmaceutical and food ind- tries. Recent experimentally and theoretically based results from research work lead to a fairly good prediction of the velocity fields in differend kinds of mixers, where as predictions of simultaneously proceeding homogeneous chemical re- tions, are still not reliable in a similar way. Therefore the design of equipment for mixing processes is still derived from measurements of the so called “mixing time” which is related to the applied methods of measurement and the special - sign of the test equipment itself. The cooperation of 17 research groups was stimulated by improved modern methods for experimental research and visualization, for simulations and nume- cal calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. The research work was financed for a six years period within the recently finished Priority Program of the German Research Foundation (DFG) named “Analysis, modeling and numerical prediction of flow-mixig with and without chemical reactions (SPP 1141)”. The objective of the investigations was to improve the prediction of efficiencies and selectivities of chemical re- tions on macroscopic scale.