Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels PDF full book. Access full book title Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels by Quentin H. Spencer. Download full books in PDF and EPUB format.

Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels

Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels PDF Author: Quentin H. Spencer
Publisher:
ISBN:
Category : Wireless communication systems
Languages : en
Pages : 145

Book Description
The closed-form solutions generally require less computation, but the iterative solutions offer improved performance are more robust to channel estimation errors, and thus may be more useful in practical applications. The performance of these algorithms were tested under realistic channel conditions by testing them on channels derived from both measurement data and a statistical model of an indoor propagation environment. These tests demonstrated both the ability of the channel to support multiple users, and the expected amount of channel estimation error due to movement of the users, with promising results. The success of any multi-user MIMO processing algorithm is ultimately dependent on the degree of correlation between the users2 channels. If a base station is required to support a large number of users, one way to ensure minimal correlation between users2 channels is to select groups of users whose channels are most compatible. The globally optimal solution to this problem is not possible without an exhaustive search, so a channel allocation algorithm is proposed that attempts to intelligently select groups of users at a more reasonable computational cost.

Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels

Transmission Strategies for Wireless Multi-user, Multiple-input, Multiple-output Communication Channels PDF Author: Quentin H. Spencer
Publisher:
ISBN:
Category : Wireless communication systems
Languages : en
Pages : 145

Book Description
The closed-form solutions generally require less computation, but the iterative solutions offer improved performance are more robust to channel estimation errors, and thus may be more useful in practical applications. The performance of these algorithms were tested under realistic channel conditions by testing them on channels derived from both measurement data and a statistical model of an indoor propagation environment. These tests demonstrated both the ability of the channel to support multiple users, and the expected amount of channel estimation error due to movement of the users, with promising results. The success of any multi-user MIMO processing algorithm is ultimately dependent on the degree of correlation between the users2 channels. If a base station is required to support a large number of users, one way to ensure minimal correlation between users2 channels is to select groups of users whose channels are most compatible. The globally optimal solution to this problem is not possible without an exhaustive search, so a channel allocation algorithm is proposed that attempts to intelligently select groups of users at a more reasonable computational cost.

Coordinated Wireless Multiple Antenna Networks

Coordinated Wireless Multiple Antenna Networks PDF Author: Chan-Byoung Chae
Publisher:
ISBN:
Category :
Languages : en
Pages : 358

Book Description
Next generation wireless systems will use multiple antenna technologies, also known as multiple-input multiple-output (MIMO), to provide high data rates and robustness against fading. MIMO communication strategies for single user communication systems and their practical application in wireless networks are by now well known. MIMO communication systems, however, can benefit from multiuser processing by coordinating the transmissions to multiple users simultaneously. For numerous reasons, work on the theory of multiuser MIMO communication has yet to see broad adoption in wireless communication standards. For example, global knowledge of channel state information is often required. Such an unrealistic assumption, however, makes it difficult in practice to implement precoding techniques. Furthermore, the achievable rates of the conventional multiuser MIMO techniques are far from the theoretical performance bounds. These and other factors motivate research on practical multiuser communication strategies for the MIMO broadcast channel (point to multi-point communication) and the analysis of those strategies. The primary contributions of this dissertation are i) the development of four novel low complexity coordinated MIMO transceiver design techniques to approach the theoretical performance bound and ii) the investigation of the optimality of the proposed coordinated wireless MIMO networks. Several coordinated beamforming algorithms are proposed, where each mobile station uses quantized combining vectors or each base station uses limited feedback from the MS. The asymptotic optimality of the proposed coordinated beamforming system for the MIMO Gaussian broadcast channel is next investigated. For multi-stream transmission, a novel block diagonalized vector perturbation is proposed and the achievable sum rate upper bound of the proposed system is derived. Finally, for multi-cell environments, linear and non-linear network CBF algorithms supporting multiple cell-boundary users are proposed. The optimality of network coordinated beamforming in terms of the number of receive antennas is also investigated.

Space-Time Processing for MIMO Communications

Space-Time Processing for MIMO Communications PDF Author: Alex Gershman
Publisher: John Wiley & Sons
ISBN: 0470010037
Category : Technology & Engineering
Languages : en
Pages : 388

Book Description
Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Exciting theoretical advances have been complemented by rapid transition of research results to industry products and services, thus creating a vibrant new area. Space-time processing is a broad area, owing in part to the underlying convergence of information theory, communications and signal processing research that brought it to fruition. This book presents a balanced and timely introduction to space-time processing for MIMO communications, including highlights of emerging trends, such as spatial multiplexing and joint transceiver optimization. Includes detailed coverage of wireless channel sounding, modelling, characterization and model validation. Provides state-of-the-art research results on space-time coding, including comprehensive tutorial coverage of orthogonal space-time block codes. Discusses important recent developments in spatial multiplexing, transmit beam-forming, pre-coding and joint transceiver design for the multi-user MIMO downlink using full or partial CSI. Illustrates all theory with numerous examples gleaned from cutting-edge research from around the globe. This valuable resource will appeal to engineers, developers and consultants involved in the design and implementation of space-time processing for MIMO communications. Its accessible format, amply illustrated with real world case studies, contains relevant, detailed advice for postgraduate students and researchers specializing in this field.

Adapting MIMO Networks to Manage Interference

Adapting MIMO Networks to Manage Interference PDF Author: Jun Zhang (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 314

Book Description
Multiple-Input Multiple-Output (MIMO) communication uses multiple transmit and receive antennas to improve the throughput in wireless channels. In cellular networks, self-interference greatly degrades MIMO's potential gain, especially in multiuser MIMO systems where multiple users in each cell share the spatial channel in order to maximize the total throughput. In a multiuser MIMO downlink, the two main causes of this self-interference are residual inter-user interference due to imperfect spatial separation between the users and other-cell interference due to cochannel transmissions in other cells. This dissertation develops adaptive transmission strategies to deal with both residual inter-user interference and other-cell interference in cellular MIMO networks. For the residual inter-user interference caused by imperfect channel state information at the transmitter, we explicitly characterize the impact of channel quantization and feedback delay. Achievable ergodic rates for both single-user and multiuser MIMO systems with different channel state information are derived. Adaptive switching between single-user and multiuser MIMO modes is proposed to improve the throughput, based on the accuracy of the available channel information. It is then extended to a multi-mode transmission strategy which adaptively adjusts the number of active users to control residual interference and provide additional array gain. To adaptively minimize the other-cell interference, two practical base station coordination strategies are proposed. The first is a cluster based coordination algorithm with different coordination strategies for cluster interior and cluster edge users. It performs full intra-cluster coordination for enhancing the sum throughput and limited inter-cluster coordination for reducing the interference for cluster edge users. A multi-cell linear precoder is designed to perform the coordination. The second is an adaptive intercell interference cancellation strategy, where multiple base stations jointly select transmission techniques based on user locations to maximize the sum throughput. Spatial interference cancellation is applied to suppress other-cell interference. Closed-form expressions are derived for the achievable throughput, and the proposed adaptive strategy is shown to provide significant average and edge throughput gain. The feedback design to assist the interference cancellation is also discussed.

Fundamentals of Wireless Communication

Fundamentals of Wireless Communication PDF Author: David Tse
Publisher: Cambridge University Press
ISBN: 9780521845274
Category : Computers
Languages : en
Pages : 598

Book Description
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.

Energy-Efficient Pilot-Data Power Control in MU-MIMO Communication Systems

Energy-Efficient Pilot-Data Power Control in MU-MIMO Communication Systems PDF Author: Ye Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Book Description
Multiple-input multiple-output (MIMO) antenna system is considered as a core technology for wireless communication. To reap the benefits of MIMO at a greater scale, massive MIMO with very large antenna arrays deployed at base station (BS) has recently become the forefront in wireless communication research. Till present, the design and analysis of large-scale MIMO systems is a fairly new subject. On the other hand, excessive power usage in MIMO networks is a crucial issue for mobile operators and the explosive growth of wireless services contributes largely to the worldwide carbon footprint. As such, significant efforts have been devoted to improve the spectral efficiency (SE) as well as energy efficiency (EE) of MIMO communication systems over the past decade, resulting in many energy efficient techniques such as power allocation. This thesis investigates novel energy-efficient pilot-data power control strategies which can be used in both conventional MIMO and massive MIMO communication systems. The new pilot-data power control algorithms are developed based ontwo optimization frameworks: one aims to minimize the total transmit power while satisfying per-user signal-interference-plus-noise ratio (SINR) and power constraints; the other aims to maximize the total EE, which is defined as the ratio of the total SE to the transmit power, under individual user power constraints. The proposed novel pilot-data power allocation schemes also take into account the maximum-ratio combining (MRC) and zero-forcing (ZF) detectors in the uplink together with maximum-ratio transmission (MRT) and ZF precoder in the downlink. Considering that a direct use of such SINR expressions in the power control schemeswould lead to a very difficult optimization problem which is not mathematically tractable, we first investigatethe statistical SINR lower bounds for multi-cell multi-user MIMO (MU-MIMO)communication systemsunder minimum mean square error (MMSE) channel estimation. These lower bounds of the per-user average SINRs are used to replace the true SINRs to simplify the power allocation optimization problems. Such relaxation of the original average SINR yields a simplified problem and leads to a suboptimal solution. Then, based on the derived average SINR lower bounds, two novel energy efficient pilot-data power control problems are formulatedwithin the first optimization framework,aiming to minimize the total transmit power budget subject to the per-user SINR requirement and power consumption constraint in multi-cell MU-MIMO systems. For the EE-optimal power allocation problems with MRT precoder and MRC detector, it is revealed that such minimization problems can be converted to a standard geometric programming (GP) procedure which can be further converted to a convex optimization problem. For the pilot-data power control scheme with ZF precoder and ZF detector, geometric inequality is used to approximate the original non-convex optimization to GP problem. The very large number of BS station situation is also discussed by assuming infinite antennas at BS. Numerical results validate the tightness of the derived SINR lower bounds and the advantages of the proposed energy efficient power allocation schemes. Next, two pilot and data power control schemes are developed based on the second power allocation optimization framework to jointly maximize the total EE for both uplink and downlink transmissions in multi-cell MU-MIMO systems under per-user and BS power constraints. The original power control problems are simplified to equivalent convex problems based on the derived SINR lower bounds along with the Dinkelbach's method and the FrankWolfe (FW) iteration. By assuming infinite antennas at BS, the pilot-data power control in massive MIMO case is also discussed. The performance of the proposed pilot-data power allocation schemes based on the two frameworks, namely total transmit power minimization and total EE maximization, are evaluated and compared with the SE maximization scheme. Furthermore, we investigate the pilot-data power allocation for EE communications in single-cell MU-MIMO systems with circuit power consumption in consideration. The pilot and data power allocation schemes are proposed to minimize the total weighted uplink and downlink transmit power as well as processing circuit power consumption while meeting the per-user SINR and BS power consumption constraints. In our proposed schemes, both fixed and flexible numbers of BS antennas are investigated. For the fixed number of BS antennas case, the non-convex optimization problems are converted to a general GP problem to facilitate the solution. An iterative algorithm is proposed to solve the EE-optimal power control problems in the flexible number of BS antennas casebased on the partial convexity of both the cost function and the constraints. It is shown that the convergence of the proposed iterative algorithm is guaranteed due to the fact that each iteration follows convex optimization.

Cooperative Communications for Improved Wireless Network Transmission: Framework for Virtual Antenna Array Applications

Cooperative Communications for Improved Wireless Network Transmission: Framework for Virtual Antenna Array Applications PDF Author: Uysal, Murat
Publisher: IGI Global
ISBN: 1605666661
Category : Computers
Languages : en
Pages : 632

Book Description
Offers practitioners, researchers, and academicians with fundamental principles of cooperative communication. This book provides readers diverse findings and exposes underlying issues in the analysis, design, and optimization of wireless systems.

Single and Cross Layer MIMO Techniques for IMT-Advanced

Single and Cross Layer MIMO Techniques for IMT-Advanced PDF Author: Dr. Filippo Meucci
Publisher: River Publishers
ISBN: 8792982905
Category : Technology & Engineering
Languages : en
Pages : 230

Book Description
In the last two decades, the wireless arena has witnessed the emergence of an astonishing number of technologies which play a part in the definition of new wireless systems. Driven by the pressing capacity demand, the research community has developed several technological enablers. Fundamental technological building blocks that will be part of wireless systems in the near-future definitely include: Orthogonal Frequency Division Multiplexing (OFDM) modulation at the physical (PHY) layer, Multiple Input Multiple. Output (MIMO) systems, and a cross-layer (CL) stack design. While the benefits of OFDM have been recognized for several years, the real capacity improvement of MIMO antennae is still being debated today. As to the lastpoint, even if opportunities for CL have been pointed out for a long time, the impact on the actual legacy systems has not been noticeable, as investors are hesitant to implement the inherent design paradigm shift. Single and Cross-Layer MIMO Techniques for IMT-Advanced will present some advanced MIMO techniques where adaptivity, cross-layer approach, and MIMO antennae are analyzed together to show a deep impact on the sum-capacityachievable over the wireless link. The introduction presents the functional requirements for IMT-A candidate systems and the relation between IEEE802.16 and LTE wireless access networks. Then, in the first part, adaptive strategies are analyzedseparately at the PHY and Medium Access Control (MAC) layers. The second part presents an evolution of the previous approach, providing a cross-layer MIMO-ARQ protocol, where adaptive MIMO schemes, namely SpatialMultiplexing (SM) and STBC Alamouti, are used with ARQ protocol. A Multiple User (MU) network is served in DownLink (DL) with a Round Robin (RR) scheduler; the design is ready to include more advanced schedulers. The ARQstate machine at the MAC layer is aware of per-antenna ARQ. The interaction between the ARQ and the PHY layer, with a per-antenna ACK, allows resource exploitation to increase with per-antenna ACKs, shifting from MIMO Signal Processing Gain to MIMO Protocol Gain with no need for Channel State Information (CSI) feedback. The absence of CSI feedback at the PHY layer is an important characteristic of the proposedMIMO-ARQ cross-layer designs since MIMO CSI feedback (when feasible) drastically reduces the network efficiency. The added degrees of freedom offered by MIMO transmissions can make the difference if correctly exploited both at the physical and medium access layers, in particular for overcoming the problem of low MIMO channel ranks. The advantages of the paradigm shift from signal processing gain to protocol gain - together with the modifications to be applied at the classical protocol stack - are discussed in the final chapter.

Transmission Resource Allocation in Multi-antenna Wireless Communication Systems with Channel Uncertainty

Transmission Resource Allocation in Multi-antenna Wireless Communication Systems with Channel Uncertainty PDF Author: Xiangyun Zhou
Publisher:
ISBN:
Category : MIMO systems
Languages : en
Pages : 312

Book Description
In this thesis we investigate the design of transmission resource allocation in current and future wireless communication systems. We focus on systems with multiple antennas and characterize their performance from an information-theoretic viewpoint. The goal of this work is to provide practical transmission and resource allocation strategies taking into account imperfections in estimating the wireless channel, as well as the broadcast nature of the wireless channel. In the first part of the thesis, we consider training-based transmission schemes in which pilot symbols are inserted into data blocks to facilitate channel estimation. We consider one-way training-based systems with and without feedback, as well as two-way training-based systems. Two-way training enables both the transmitter and the receiver to obtain the channel state information (CSI) through reverse training and forward training, respectively. In all considered cases, we derive efficient strategies for transmit time and/or energy allocation among the pilot and data symbols. These strategies usually have analytical closed-form expressions and can achieve near optimal capacity performance evidenced by extensive numerical analysis. In one-way training-based systems without feedback, we consider both spatially independent and correlated channels. For spatially independent channels, we provide analytical bounds on the optimal training length and study the optimal antenna conguration that maximizes an ergodic capacity lower bound. For spatially correlated channels, we provide simple pilot and data transmission strategies that are robust under least-favorable channel correlation conditions. In one-way training-based systems with feedback, we study channel gain feedback (CGF), channel covariance feedback (CCF) and hybrid feedback. For spatially independent channels with CGF, we show that the solutions to the optimal training length and energy coincide with those for systems without feedback. For spatially correlated channels with CCF, we propose a simple transmission scheme, taking into account the fact that the optimal training length is at most as large as the number of transmit antennas. We then provided solution to the optimal energy allocation between pilot and data transmissions, which does not depend on the channel spatial correlation under a mild condition. Our derived resource allocation strategies in CGF and CCF systems are extended to hybrid CCF-CGF systems. In two-way training-based systems, we provide analytical solutions to the transmit power distribution among the different training phases and the data transmission phase. These solutions are shown to have near optimal symbol error rate (SER) and capacity performance. We find that the use of two-way training can provide noticeable performance improvement over reverse training only when the system is operating at moderate to high signal-to-noise ratio (SNR) and using high-order modulations. While this improvement from two-way training is insignificant at low SNR or low-order modulations. In the second part of the thesis, we consider transmission resource allocation in security-constrained systems. Due to the broadcast nature of the wireless medium, security is a fundamental issue in wireless communications. To guarantee secure communication in the presence of eavesdroppers, we consider a multi-antenna transmission strategy which sends both an information signal to the intended receiver and a noise-like signal isotropically to confuse the eavesdroppers. We study the optimal transmit power allocation between the information signal and the artificial noise. In particular, we show that equal power allocation is a near optimal strategy for non-colluding eavesdroppers, while more power should be used to generate the artificial noise for colluding eavesdroppers. In the presence of channel estimation errors, we find that it is better to create more artificial noise than to increase the information signal strength.

Developments in Wireless Network Prototyping, Design, and Deployment: Future Generations

Developments in Wireless Network Prototyping, Design, and Deployment: Future Generations PDF Author: Matin, Mohammad A.
Publisher: IGI Global
ISBN: 1466617985
Category : Computers
Languages : en
Pages : 361

Book Description
"This book highlights the current design issues in wireless networks, informing scholars and practitioners about advanced prototyping innovations in this field"--