Author: H. R. Nagendra
Publisher:
ISBN:
Category : Aerodynamic measurements
Languages : en
Pages : 52
Book Description
An approach for the solution of transient-forced convection film boiling on an isothermal flat plate using the boundary layer model is developed. The similarity variables are used to convert the governing partial differential equations to ordinary ones. The results of numerical solutions of these ordinary equations indicate that the transient process can be classified as one-dimensional conduction, intermediate, and the steady state regions. The time required for the one-dimensional conduction and the time necessary to attain a steady state condition are obtained. The influence of interfacial shear is seen to be negligible while the Prandtl Number and the ratio (C sub p delta T divided by h sub fg times Pr) have major influence. The use of local similarity approximations for the intermediate regime facilitates prediction of complete boundary layer growth. Using the ratio of time at any instant to the steady state time as abscissa, the curves representing the boundary layer growth can be merged into a single mean curve within 5 percent. Further, the analysis shows that the average rate of heat transfer during transient is 50 to 100 percent higher than those at steady state. The average rate of vapor convected away is 10 to 15 percent lower than at steady state while the average rate of accumulation to form the vapor layer is 1 to 14 times larger. Further, the total heat transferred during transient increases and the evaporation decreases for increasing values of C sub p delta T divided by h sub fg times Pr.
Transient-forced Convection Film Boiling on an Isothermal Flat Plate
Author: H. R. Nagendra
Publisher:
ISBN:
Category : Aerodynamic measurements
Languages : en
Pages : 52
Book Description
An approach for the solution of transient-forced convection film boiling on an isothermal flat plate using the boundary layer model is developed. The similarity variables are used to convert the governing partial differential equations to ordinary ones. The results of numerical solutions of these ordinary equations indicate that the transient process can be classified as one-dimensional conduction, intermediate, and the steady state regions. The time required for the one-dimensional conduction and the time necessary to attain a steady state condition are obtained. The influence of interfacial shear is seen to be negligible while the Prandtl Number and the ratio (C sub p delta T divided by h sub fg times Pr) have major influence. The use of local similarity approximations for the intermediate regime facilitates prediction of complete boundary layer growth. Using the ratio of time at any instant to the steady state time as abscissa, the curves representing the boundary layer growth can be merged into a single mean curve within 5 percent. Further, the analysis shows that the average rate of heat transfer during transient is 50 to 100 percent higher than those at steady state. The average rate of vapor convected away is 10 to 15 percent lower than at steady state while the average rate of accumulation to form the vapor layer is 1 to 14 times larger. Further, the total heat transferred during transient increases and the evaporation decreases for increasing values of C sub p delta T divided by h sub fg times Pr.
Publisher:
ISBN:
Category : Aerodynamic measurements
Languages : en
Pages : 52
Book Description
An approach for the solution of transient-forced convection film boiling on an isothermal flat plate using the boundary layer model is developed. The similarity variables are used to convert the governing partial differential equations to ordinary ones. The results of numerical solutions of these ordinary equations indicate that the transient process can be classified as one-dimensional conduction, intermediate, and the steady state regions. The time required for the one-dimensional conduction and the time necessary to attain a steady state condition are obtained. The influence of interfacial shear is seen to be negligible while the Prandtl Number and the ratio (C sub p delta T divided by h sub fg times Pr) have major influence. The use of local similarity approximations for the intermediate regime facilitates prediction of complete boundary layer growth. Using the ratio of time at any instant to the steady state time as abscissa, the curves representing the boundary layer growth can be merged into a single mean curve within 5 percent. Further, the analysis shows that the average rate of heat transfer during transient is 50 to 100 percent higher than those at steady state. The average rate of vapor convected away is 10 to 15 percent lower than at steady state while the average rate of accumulation to form the vapor layer is 1 to 14 times larger. Further, the total heat transferred during transient increases and the evaporation decreases for increasing values of C sub p delta T divided by h sub fg times Pr.
NASA Technical Note
Prediction of Centerline Shock-layer Thickness and Pressure Distribution on Delta Wing-body Configurations
Author: George E. Kaattari
Publisher:
ISBN:
Category : Angle of attack (Aerodynamics)
Languages : en
Pages : 778
Book Description
Publisher:
ISBN:
Category : Angle of attack (Aerodynamics)
Languages : en
Pages : 778
Book Description
Monthly Catalog, United States Public Documents
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1282
Book Description
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1282
Book Description
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
Thermodynamics In Nuclear Power Plant Systems
Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319134191
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.
Publisher: Springer
ISBN: 3319134191
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1038
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1038
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Heat Bibliography
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1388
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1388
Book Description
Applied Mechanics Reviews
Monthly Catalog of United States Government Publications, Cumulative Index
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1466
Book Description
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1466
Book Description