Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs) PDF full book. Access full book title Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs) by Benjamin Thomas Gatzke. Download full books in PDF and EPUB format.

Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)

Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs) PDF Author: Benjamin Thomas Gatzke
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 61

Book Description
This thesis explores the numerical methods and software development for optimal trajectories of a specific model of Helicopter Unmanned Aerial Vehicle (UAV) in an obstacle-rich environment. This particular model is adopted from the UAV Laboratory of the National University of Singapore who built and simulated flights for an X-Cell 60 small-scale UAV Helicopter. The code, which allowed the team to simulate flights, is a complex system of non-linear differential equations-5 state variables and four control variables-used to maneuver the state trajectories. This non-linear model is incorporated into a separate optimization algorithm code, which allows the user to set initial and final time conditions together with various constraints, and, using the same variable scheme, optimize a trajectory. The optimal trajectory is defined by using a cost function-the performance measure-and the system is subject to a set of constraints (such as mechanical limitations and physical three-dimensional obstacles). Simulations conclude that solutions are readily obtained; however, it is still very difficult to derive trajectories that are truly optimal, and our work calls for more future research in computational programs for optimal trajectory planning. All simulations in this thesis are modeled using the MATLAB program.

Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)

Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs) PDF Author: Benjamin Thomas Gatzke
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 61

Book Description
This thesis explores the numerical methods and software development for optimal trajectories of a specific model of Helicopter Unmanned Aerial Vehicle (UAV) in an obstacle-rich environment. This particular model is adopted from the UAV Laboratory of the National University of Singapore who built and simulated flights for an X-Cell 60 small-scale UAV Helicopter. The code, which allowed the team to simulate flights, is a complex system of non-linear differential equations-5 state variables and four control variables-used to maneuver the state trajectories. This non-linear model is incorporated into a separate optimization algorithm code, which allows the user to set initial and final time conditions together with various constraints, and, using the same variable scheme, optimize a trajectory. The optimal trajectory is defined by using a cost function-the performance measure-and the system is subject to a set of constraints (such as mechanical limitations and physical three-dimensional obstacles). Simulations conclude that solutions are readily obtained; however, it is still very difficult to derive trajectories that are truly optimal, and our work calls for more future research in computational programs for optimal trajectory planning. All simulations in this thesis are modeled using the MATLAB program.

Zwen und dreissig Artickel, die allgemeinen Religion und Glauben belangend, von den Theologen der hohen schul zu Löven, gantz newlich aussgangen

Zwen und dreissig Artickel, die allgemeinen Religion und Glauben belangend, von den Theologen der hohen schul zu Löven, gantz newlich aussgangen PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description


Trajectory Optimization with Detection Avoidance for Visually Identifying an Aircraft

Trajectory Optimization with Detection Avoidance for Visually Identifying an Aircraft PDF Author: Leonard Nathaniel Wholey
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Book Description
Unmanned aerial vehicles (UAVs) play an essential role for the US Armed Forces by performing missions deemed as "dull, dirty and dangerous" for a pilot. As the capability of UAVs expand. they will perform a broader range of missions such as air-to-air combat. The focus of this thesis is forming trajectories for the closing phase of an air-to-air combat scenario. A UAV should close with the suspected aircraft in a manner that allows a ground operator to visually identify the suspected aircraft while avoiding visual/electronic detection from the other pilot. This thesis applies and compares three methods for producing trajectories which enable a visual identification. The first approach is formulated as a mixed integer linear programming problem which can be solved in real time. However, there are limitations to the accuracy of a radar detection model formed with only linear equations, which might justify using a nonlinear programming formulation. With this approach the interceptor's radar cross section and range between the suspected aircraft and interceptor can be incorporated into the problem formulation. The main limitation of this method is that the optimization software might not be able to reach online an optimal or even feasible solution. The third applied method is trajectory interpolation. In this approach, trajectories with specified boundary values and dynamics are formed offline; online, the method interpolates between the given trajectories to obtain similar maneuvers with different initial conditions and end- states. With this method, because the number of calculations required to produce a feasible trajectory is known, the amount of time to calculate a trajectory can be estimated.

Robust Trajectory Optimization and Control of a Dynamic Soaring Unmanned Aerial Vehicle

Robust Trajectory Optimization and Control of a Dynamic Soaring Unmanned Aerial Vehicle PDF Author: Tristan Charles Flanzer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A robust trajectory optimization method is formulated using a stochastic collocation based approach and is then applied to the design of periodic dynamic soaring trajectories for unmanned aerial vehicles (UAVs). Repetitive control is proposed and evaluated as a means for reducing tracking error for UAVs flying periodic trajectories both in simulation and experimentally. Experiments conducted in an indoor flying laboratory outfitted with a VICON motion capture system demonstrate significant reductions in tracking error even in the presence of large and unknown disturbances.

Optimal Control of a Helicopter Unmanned Aerial Vehicle (UAV)

Optimal Control of a Helicopter Unmanned Aerial Vehicle (UAV) PDF Author: David John Nodland
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 188

Book Description
"This thesis addresses optimal control of a helicopter unmanned aerial vehicle (UAV). Helicopter UAVs may be widely used for both military and civilian operations. Because these helicopters are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This thesis presents an optimal controller design via both state and output feedback for trajectory tracking of a helicopter UAV using a neural network (NN). The state and output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers while the output feedback approach uses an observer in addition to these controllers. The online approximator-based dynamic controller learns the Hamilton-Jacobi-Bellman (HJB) equation in continuous time and calculates the corresponding optimal control input to minimize the HJB equation forward-in-time. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking. A description of the hardware for confirming the theoretical approach, and a discussion of material pertaining to the algorithms used and methods employed specific to the hardware implementation is also included. Additional attention is devoted to challenges in implementation as well as to opportunities for further research in this field. This thesis is presented in the form of two papers"--Abstract, leaf iv.

Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles

Trajectory Optimization and Design for a Large Number of Unmanned Aerial Vehicles PDF Author: Jenna Elisabeth Newcomb
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 56

Book Description
An unmanned aerial vehicle (UAV) swarm allows for a more time-efficient method of searching a specified area than a single UAV or piloted plane. There are a variety of factors that affect how well an area is surveyed. We specifically analyzed the effect both vehicle properties and communication had on the swarm search performance. We used non-dimensionalization so the results can be applied to any domain size with any type of vehicle. We found that endurance was the most important factor. Vehicles with good endurance sensed approximately 90% to 100% of the grid, even when other properties were lacking. If the vehicles lacked endurance, the amount of area the vehicles could sense at a given time step became more important and 10% more of the grid was sensed with the increase in sensed area. The maneuverability of the vehicles was measured as the vehicles' radii of turn compared to the search domain size. The maneuverability mattered the most in the middle-range endurance cases. In some cases 30% more of the grid was searched with improving vehicle maneuverability. In addition, we also examined four communication cases with different amounts of information regarding vehicle location. We found communication increased search performance by at least 6.3%. However, increasing the amount of information only changed the performance by 2.3%. We also studied the impact the range of vehicle communication had on search performance. We found that simulations benefited most from increasing the communication range when the amount of area sensed at a given time step was small and the vehicles had good maneuverability. We also extended the optimization to a multi-objective process with the inclusion of target tracking. We analyzed how the different weightings of the objectives affected the performance outcomes. We found that target tracking performance dramatically changes based on the given weighting of each objective and saw an increase of approximately 52%. However, the amount of the grid that was sensed only dropped by approximately 10%.

On-Line Trajectory Optimization for Autonomous Air Vehicles

On-Line Trajectory Optimization for Autonomous Air Vehicles PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Successful operation of next-generation unmanned air vehicles will demand a high level of autonomy. Autonomous low-level operation in a high-threat environment dictates a need for on-hoard, robust, reliable and efficient trajectory optimization. in this report, we develop and demonstrate an innovative combination of traditional analytical and numerical solution procedures to produce efficient, robust and reliable means for nonlinear Light path optimization in the presence of time-varying obstacles and threats. The solution procedure exploits the natural time-scale separation that exists in the aircraft dynamics using singular perturbation theory. A reduced order problem involving only the kinematics of the position subspace is treated numerically. The nonlinear aircraft dynamics are to be treated analytically in phase II using a boundary layer analysis that results in an optimal feedback guidance solution. The developed algorithms were coupled with a neural network adaptive autopilot and integrated in an existing unmanned test-bed. This report documents the phase I effort, which produced a demonstration of the developed algorithm in near-real-time flight simulation, and included a simple evaluation of tracking computed trajectories on a rotary wing UAV.

Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles

Trajectory Optimization for Target Localization Using Small Unmanned Aerial Vehicles PDF Author: Sameera S. Ponda
Publisher:
ISBN:
Category :
Languages : en
Pages : 197

Book Description
(cont.) The UAV trajectory optimization is performed for stationary targets, dynamic targets and multiple targets, for many different scenarios of vehicle motion constraints. The resulting trajectories show spiral paths taken by the UAV, which focus on increasing the angular separation between measurements and reducing the relative range to the target, thus maximizing the information provided by each measurement and improving the performance of the estimation. The main drawback of information based trajectory design is the dependence of the Fisher Information Matrix on the true target location. This issue is addressed in this project by executing simultaneous target location estimation and UAV trajectory optimization. Two estimation algorithms, the Extended Kalman Filter and the Particle Filter are considered, and the trajectory optimization is performed using the mean value of the target estimation in lieu of the true target location. The estimation and optimization algorithms run in sequence and are updated in real-time. The results show spiral UAV trajectories that increase filter convergence and overall estimation accuracy, illustrating the importance of information-based trajectory design for target localization using small UAVs.

Advances in Unmanned Aerial Vehicles

Advances in Unmanned Aerial Vehicles PDF Author: Kimon P. Valavanis
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552

Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.

Optimal Guidance and Its Applications in Missiles and UAVs

Optimal Guidance and Its Applications in Missiles and UAVs PDF Author: Shaoming He
Publisher: Springer Nature
ISBN: 3030473481
Category : Technology & Engineering
Languages : en
Pages : 214

Book Description
This book presents a comprehensive overview of the recent advances in the domain of optimal guidance, exploring the characteristics of various optimal guidance algorithms and their pros and cons. Optimal guidance is based on the concept of trajectory optimization, which minimizes the meaningful performance index while satisfying certain terminal constraints, and by properly designing the cost function the guidance command can serve as a desired pattern for a variety of mission objectives. The book allows readers to gain a deeper understanding of how optimal guidance law can be utilized to achieve different mission objectives for missiles and UAVs, and also explores the physical meaning and working principle of different new optimal guidance laws. In practice, this information is important in ensuring confidence in the performance and reliability of the guidance law when implementing it in a real-world system, especially in aerospace engineering where reliability is the first priority.