An Introduction to the Topological Derivative Method PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to the Topological Derivative Method PDF full book. Access full book title An Introduction to the Topological Derivative Method by Antonio André Novotny. Download full books in PDF and EPUB format.

An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer Nature
ISBN: 3030369153
Category : Mathematics
Languages : en
Pages : 120

Book Description
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer Nature
ISBN: 3030369153
Category : Mathematics
Languages : en
Pages : 120

Book Description
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

Topological Derivatives in Shape Optimization

Topological Derivatives in Shape Optimization PDF Author: Antonio André Novotny
Publisher: Springer Science & Business Media
ISBN: 3642352456
Category : Technology & Engineering
Languages : en
Pages : 423

Book Description
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.

Introduction to Shape Optimization

Introduction to Shape Optimization PDF Author: Jan Sokolowski
Publisher: Springer Science & Business Media
ISBN: 3642581064
Category : Mathematics
Languages : en
Pages : 254

Book Description
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.

Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems PDF Author: Dorin Bucur
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218

Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.

Advances in Structural and Multidisciplinary Optimization

Advances in Structural and Multidisciplinary Optimization PDF Author: Axel Schumacher
Publisher: Springer
ISBN: 3319679880
Category : Science
Languages : en
Pages : 2101

Book Description
The volume includes papers from the WSCMO conference in Braunschweig 2017 presenting research of all aspects of the optimal design of structures as well as multidisciplinary design optimization where the involved disciplines deal with the analysis of solids, fluids or other field problems. Also presented are practical applications of optimization methods and the corresponding software development in all branches of technology.

Applications of the Topological Derivative Method

Applications of the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer
ISBN: 3030054322
Category : Technology & Engineering
Languages : en
Pages : 222

Book Description
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.

Shapes and Geometries

Shapes and Geometries PDF Author: M. C. Delfour
Publisher: SIAM
ISBN: 0898719828
Category : Mathematics
Languages : en
Pages : 638

Book Description
This considerably enriched new edition provides a self-contained presentation of the mathematical foundations, constructions, and tools necessary for studying problems where the modeling, optimization, or control variable is the shape or the structure of a geometric object.

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials PDF Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602

Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.

Design Sensitivity Analysis of Structural Systems

Design Sensitivity Analysis of Structural Systems PDF Author: Vadim Komkov
Publisher: Academic Press
ISBN: 0080960006
Category : Technology & Engineering
Languages : en
Pages : 399

Book Description
The book is organized into four chapters. The first three treat distinct types of design variables, and the fourth presents a built-up structure formulation that combines the other three. The first chapter treats finite-dimensional problems, in which the state variable is a finite-dimensional vector of structure displacements and the design parameters. The structual state equations are matrix equations for static response, vibration, and buckling of structures and matrix differential equations for transient dynamic response of structures, which design variables appearing in the coefficient matrices.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization PDF Author: Harbir Antil
Publisher: Springer
ISBN: 1493986368
Category : Mathematics
Languages : en
Pages : 435

Book Description
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.