Author: Robert B. Ash
Publisher: Academic Press
ISBN: 1483191435
Category : Mathematics
Languages : en
Pages : 332
Book Description
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
Topics in Stochastic Processes
Author: Robert B. Ash
Publisher: Academic Press
ISBN: 1483191435
Category : Mathematics
Languages : en
Pages : 332
Book Description
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
Publisher: Academic Press
ISBN: 1483191435
Category : Mathematics
Languages : en
Pages : 332
Book Description
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
Complex Stochastic Systems
Author: O.E. Barndorff-Nielsen
Publisher: CRC Press
ISBN: 9781420035988
Category : Mathematics
Languages : en
Pages : 306
Book Description
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.
Publisher: CRC Press
ISBN: 9781420035988
Category : Mathematics
Languages : en
Pages : 306
Book Description
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.
Stochastic Systems
Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
ISBN: 1447123271
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.
Publisher: Springer Science & Business Media
ISBN: 1447123271
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.
Basic Stochastic Processes
Author: Zdzislaw Brzezniak
Publisher: Springer Science & Business Media
ISBN: 1447105338
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Publisher: Springer Science & Business Media
ISBN: 1447105338
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Basics of Applied Stochastic Processes
Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452
Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452
Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Stochastic Processes in Engineering Systems
Author: E. Wong
Publisher: Springer Science & Business Media
ISBN: 1461250609
Category : Mathematics
Languages : en
Pages : 372
Book Description
This book is a revision of Stochastic Processes in Information and Dynamical Systems written by the first author (E.W.) and published in 1971. The book was originally written, and revised, to provide a graduate level text in stochastic processes for students whose primary interest is its applications. It treats both the traditional topic of sta tionary processes in linear time-invariant systems as well as the more modern theory of stochastic systems in which dynamic structure plays a profound role. Our aim is to provide a high-level, yet readily acces sible, treatment of those topics in the theory of continuous-parameter stochastic processes that are important in the analysis of information and dynamical systems. The theory of stochastic processes can easily become abstract. In dealing with it from an applied point of view, we have found it difficult to decide on the appropriate level of rigor. We intend to provide just enough mathematical machinery so that important results can be stated PREFACE vi with precision and clarity; so much ofthe theory of stochastic processes is inherently simple if the suitable framework is provided. The price of providing this framework seems worth paying even though the ul timate goal is in applications and not the mathematics per se.
Publisher: Springer Science & Business Media
ISBN: 1461250609
Category : Mathematics
Languages : en
Pages : 372
Book Description
This book is a revision of Stochastic Processes in Information and Dynamical Systems written by the first author (E.W.) and published in 1971. The book was originally written, and revised, to provide a graduate level text in stochastic processes for students whose primary interest is its applications. It treats both the traditional topic of sta tionary processes in linear time-invariant systems as well as the more modern theory of stochastic systems in which dynamic structure plays a profound role. Our aim is to provide a high-level, yet readily acces sible, treatment of those topics in the theory of continuous-parameter stochastic processes that are important in the analysis of information and dynamical systems. The theory of stochastic processes can easily become abstract. In dealing with it from an applied point of view, we have found it difficult to decide on the appropriate level of rigor. We intend to provide just enough mathematical machinery so that important results can be stated PREFACE vi with precision and clarity; so much ofthe theory of stochastic processes is inherently simple if the suitable framework is provided. The price of providing this framework seems worth paying even though the ul timate goal is in applications and not the mathematics per se.
Probability and Mathematical Statistics
Author: Eugene Lukacs
Publisher: Academic Press
ISBN: 1483269205
Category : Mathematics
Languages : en
Pages : 255
Book Description
Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student's distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.
Publisher: Academic Press
ISBN: 1483269205
Category : Mathematics
Languages : en
Pages : 255
Book Description
Probability and Mathematical Statistics: An Introduction provides a well-balanced first introduction to probability theory and mathematical statistics. This book is organized into two sections encompassing nine chapters. The first part deals with the concept and elementary properties of probability space, and random variables and their probability distributions. This part also considers the principles of limit theorems, the distribution of random variables, and the so-called student's distribution. The second part explores pertinent topics in mathematical statistics, including the concept of sampling, estimation, and hypotheses testing. This book is intended primarily for undergraduate statistics students.
Selected Topics On Stochastic Modelling
Author: Mariano J Valderrama Bonnet
Publisher: World Scientific
ISBN: 9814550701
Category :
Languages : en
Pages : 326
Book Description
This volume contains a selection of papers on recent developments in fields such as stochastic processes, multivariate data analysis and stochastic models in operations research, earth and life sciences and information theory, from an applicative perspective. Some of them have been extracted from lectures given at the Department of Statistics and Operations Research at the University of Granada for the past two years (Kai Lai Chung and Marcel F Neuts, among others). All the papers have been carefully selected and revised.
Publisher: World Scientific
ISBN: 9814550701
Category :
Languages : en
Pages : 326
Book Description
This volume contains a selection of papers on recent developments in fields such as stochastic processes, multivariate data analysis and stochastic models in operations research, earth and life sciences and information theory, from an applicative perspective. Some of them have been extracted from lectures given at the Department of Statistics and Operations Research at the University of Granada for the past two years (Kai Lai Chung and Marcel F Neuts, among others). All the papers have been carefully selected and revised.
Stochastic Analysis, Stochastic Systems, and Applications to Finance
Author: Allanus Hak-Man Tsoi
Publisher: World Scientific
ISBN: 9814355712
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin
Publisher: World Scientific
ISBN: 9814355712
Category : Business & Economics
Languages : en
Pages : 274
Book Description
Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin
Dynamics of Stochastic Systems
Author: Valery I. Klyatskin
Publisher: Elsevier
ISBN: 008050485X
Category : Science
Languages : en
Pages : 211
Book Description
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes.Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.·This book is translation from Russian and is completed with new principal results of recent research.·The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.·Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence
Publisher: Elsevier
ISBN: 008050485X
Category : Science
Languages : en
Pages : 211
Book Description
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes.Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.·This book is translation from Russian and is completed with new principal results of recent research.·The book develops mathematical tools of stochastic analysis, and applies them to a wide range of physical models of particles, fluids, and waves.·Accessible to a broad audience with general background in mathematical physics, but no special expertise in stochastic analysis, wave propagation or turbulence