Author: Wim Schoutens
Publisher: Wiley
ISBN: 9780470851562
Category : Mathematics
Languages : en
Pages : 200
Book Description
Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.
Levy Processes in Finance
Author: Wim Schoutens
Publisher: Wiley
ISBN: 9780470851562
Category : Mathematics
Languages : en
Pages : 200
Book Description
Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.
Publisher: Wiley
ISBN: 9780470851562
Category : Mathematics
Languages : en
Pages : 200
Book Description
Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.
Financial Models with Levy Processes and Volatility Clustering
Author: Svetlozar T. Rachev
Publisher: John Wiley & Sons
ISBN: 0470937262
Category : Business & Economics
Languages : en
Pages : 316
Book Description
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
Publisher: John Wiley & Sons
ISBN: 0470937262
Category : Business & Economics
Languages : en
Pages : 316
Book Description
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
Lévy Processes and Stochastic Calculus
Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 1139477986
Category : Mathematics
Languages : en
Pages : 461
Book Description
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
Publisher: Cambridge University Press
ISBN: 1139477986
Category : Mathematics
Languages : en
Pages : 461
Book Description
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
Financial Modelling with Jump Processes
Author: Peter Tankov
Publisher: CRC Press
ISBN: 1135437947
Category : Business & Economics
Languages : en
Pages : 552
Book Description
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Publisher: CRC Press
ISBN: 1135437947
Category : Business & Economics
Languages : en
Pages : 552
Book Description
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Change of Time Methods in Quantitative Finance
Author: Anatoliy Swishchuk
Publisher: Springer
ISBN: 331932408X
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book is devoted to the history of Change of Time Methods (CTM), the connections of CTM to stochastic volatilities and finance, fundamental aspects of the theory of CTM, basic concepts, and its properties. An emphasis is given on many applications of CTM in financial and energy markets, and the presented numerical examples are based on real data. The change of time method is applied to derive the well-known Black-Scholes formula for European call options, and to derive an explicit option pricing formula for a European call option for a mean-reverting model for commodity prices. Explicit formulas are also derived for variance and volatility swaps for financial markets with a stochastic volatility following a classical and delayed Heston model. The CTM is applied to price financial and energy derivatives for one-factor and multi-factor alpha-stable Levy-based models. Readers should have a basic knowledge of probability and statistics, and some familiarity with stochastic processes, such as Brownian motion, Levy process and martingale.
Publisher: Springer
ISBN: 331932408X
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book is devoted to the history of Change of Time Methods (CTM), the connections of CTM to stochastic volatilities and finance, fundamental aspects of the theory of CTM, basic concepts, and its properties. An emphasis is given on many applications of CTM in financial and energy markets, and the presented numerical examples are based on real data. The change of time method is applied to derive the well-known Black-Scholes formula for European call options, and to derive an explicit option pricing formula for a European call option for a mean-reverting model for commodity prices. Explicit formulas are also derived for variance and volatility swaps for financial markets with a stochastic volatility following a classical and delayed Heston model. The CTM is applied to price financial and energy derivatives for one-factor and multi-factor alpha-stable Levy-based models. Readers should have a basic knowledge of probability and statistics, and some familiarity with stochastic processes, such as Brownian motion, Levy process and martingale.
Lévy Processes
Author: Ole E Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414
Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
Publisher: Springer Science & Business Media
ISBN: 1461201977
Category : Mathematics
Languages : en
Pages : 414
Book Description
A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
Paris-Princeton Lectures on Mathematical Finance 2010
Author: Areski Cousin
Publisher: Springer Science & Business Media
ISBN: 3642146597
Category : Mathematics
Languages : en
Pages : 374
Book Description
The Paris-Princeton Lectures in Financial Mathematics, of which this is the fourth volume, publish cutting-edge research in self-contained, expository articles from outstanding specialists - established or on the rise! The aim is to produce a series of articles that can serve as an introductory reference source for research in the field. The articles are the result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with five articles by: 1. Areski Cousin, Monique Jeanblanc and Jean-Paul Laurent, 2. Stéphane Crépey, 3. Olivier Guéant, Jean-Michel Lasry and Pierre-Louis Lions, 4. David Hobson and 5. Peter Tankov.
Publisher: Springer Science & Business Media
ISBN: 3642146597
Category : Mathematics
Languages : en
Pages : 374
Book Description
The Paris-Princeton Lectures in Financial Mathematics, of which this is the fourth volume, publish cutting-edge research in self-contained, expository articles from outstanding specialists - established or on the rise! The aim is to produce a series of articles that can serve as an introductory reference source for research in the field. The articles are the result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with five articles by: 1. Areski Cousin, Monique Jeanblanc and Jean-Paul Laurent, 2. Stéphane Crépey, 3. Olivier Guéant, Jean-Michel Lasry and Pierre-Louis Lions, 4. David Hobson and 5. Peter Tankov.
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities
Author: Anatoli? Vital?evich Svishchuk
Publisher: World Scientific
ISBN: 9814440132
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities is devoted to the modeling and pricing of various kinds of swaps, such as those for variance, volatility, covariance, correlation, for financial and energy markets with different stochastic volatilities, which include CIR process, regime-switching, delayed, mean-reverting, multi-factor, fractional, Levy-based, semi-Markov and COGARCH(1,1). One of the main methods used in this book is change of time method. The book outlines how the change of time method works for different kinds of models and problems arising in financial and energy markets and the associated problems in modeling and pricing of a variety of swaps. The book also contains a study of a new model, the delayed Heston model, which improves the volatility surface fitting as compared with the classical Heston model. The author calculates variance and volatility swaps for this model and provides hedging techniques. The book considers content on the pricing of variance and volatility swaps and option pricing formula for mean-reverting models in energy markets. Some topics such as forward and futures in energy markets priced by multi-factor Levy models and generalization of Black-76 formula with Markov-modulated volatility are part of the book as well, and it includes many numerical examples such as S&P60 Canada Index, S&P500 Index and AECO Natural Gas Index.
Publisher: World Scientific
ISBN: 9814440132
Category : Business & Economics
Languages : en
Pages : 326
Book Description
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities is devoted to the modeling and pricing of various kinds of swaps, such as those for variance, volatility, covariance, correlation, for financial and energy markets with different stochastic volatilities, which include CIR process, regime-switching, delayed, mean-reverting, multi-factor, fractional, Levy-based, semi-Markov and COGARCH(1,1). One of the main methods used in this book is change of time method. The book outlines how the change of time method works for different kinds of models and problems arising in financial and energy markets and the associated problems in modeling and pricing of a variety of swaps. The book also contains a study of a new model, the delayed Heston model, which improves the volatility surface fitting as compared with the classical Heston model. The author calculates variance and volatility swaps for this model and provides hedging techniques. The book considers content on the pricing of variance and volatility swaps and option pricing formula for mean-reverting models in energy markets. Some topics such as forward and futures in energy markets priced by multi-factor Levy models and generalization of Black-76 formula with Markov-modulated volatility are part of the book as well, and it includes many numerical examples such as S&P60 Canada Index, S&P500 Index and AECO Natural Gas Index.
General Equilibrium Option Pricing Method: Theoretical and Empirical Study
Author: Jian Chen
Publisher: Springer
ISBN: 9811074283
Category : Business & Economics
Languages : en
Pages : 163
Book Description
This book mainly addresses the general equilibrium asset pricing method in two aspects: option pricing and variance risk premium. First, volatility smile and smirk is the famous puzzle in option pricing. Different from no arbitrage method, this book applies the general equilibrium approach in explaining the puzzle. In the presence of jump, investors impose more weights on the jump risk than the volatility risk, and as a result, investors require more jump risk premium which generates a pronounced volatility smirk. Second, based on the general equilibrium framework, this book proposes variance risk premium and empirically tests its predictive power for international stock market returns.
Publisher: Springer
ISBN: 9811074283
Category : Business & Economics
Languages : en
Pages : 163
Book Description
This book mainly addresses the general equilibrium asset pricing method in two aspects: option pricing and variance risk premium. First, volatility smile and smirk is the famous puzzle in option pricing. Different from no arbitrage method, this book applies the general equilibrium approach in explaining the puzzle. In the presence of jump, investors impose more weights on the jump risk than the volatility risk, and as a result, investors require more jump risk premium which generates a pronounced volatility smirk. Second, based on the general equilibrium framework, this book proposes variance risk premium and empirically tests its predictive power for international stock market returns.
Financial Modeling Under Non-Gaussian Distributions
Author: Eric Jondeau
Publisher: Springer Science & Business Media
ISBN: 1846286964
Category : Mathematics
Languages : en
Pages : 541
Book Description
This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.
Publisher: Springer Science & Business Media
ISBN: 1846286964
Category : Mathematics
Languages : en
Pages : 541
Book Description
This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.