Author: Demetrios George Samaras
Publisher:
ISBN:
Category : Ion flow dynamics
Languages : en
Pages : 664
Book Description
Theory of Ion Flow Dynamics
Author: Demetrios George Samaras
Publisher:
ISBN:
Category : Ion flow dynamics
Languages : en
Pages : 664
Book Description
Publisher:
ISBN:
Category : Ion flow dynamics
Languages : en
Pages : 664
Book Description
Applications of Ion Flow Dynamics
Author: Demetrios George Samaras
Publisher:
ISBN:
Category : Ion flow dynamics
Languages : en
Pages : 616
Book Description
Publisher:
ISBN:
Category : Ion flow dynamics
Languages : en
Pages : 616
Book Description
Theory of Ion Flow Dynamics
Author: Demetrios George Samaras
Publisher:
ISBN: 9780486603094
Category : Ion flow dynamics
Languages : en
Pages : 666
Book Description
Publisher:
ISBN: 9780486603094
Category : Ion flow dynamics
Languages : en
Pages : 666
Book Description
Neuronal Dynamics
Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591
Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Nuclear Science Abstracts
Dynamics of Ion-Molecule Complexes
Author: William L Hase
Publisher: Elsevier
ISBN: 1483283623
Category : Science
Languages : en
Pages : 329
Book Description
Advances in Classical Trajectory Methods, Volume 2: Dynamics of Ion-Molecule Complexes is a seven-chapter text that covers the considerable advances in the experimental and theoretical aspects of ion-molecular complexes, with particular emphasis on the dynamics and kinetics of their formation and ensuing unimolecular dissociation. This text also considers the development and testing of theoretical models for these formation and decomposition processes. The opening chapters discuss photoelectron photoion coincidence, ion cyclotron resonance, and crossed molecular beam studies of metastable ion-molecule complexes formed in ion-molecule collisions. These experimental studies involve comparisons with the predictions of statistical models, such as the Rice-Ramsperger-Kassel-Marcus and phase space theories, and comparisons with the reaction dynamics predicted by classical trajectory calculations. The succeeding chapter describes the double-well model for ion-molecular reactions taking place on a potential energy surface with a central barrier that separates two potential energy minima. These topics are followed by reviews of the quantum chemical calculation and reaction path Hamiltonian analysis of SN2 reactions, the transition state theory for ion-dipole and ion-quadrupole capture, and the capture and dynamical models for ion-molecule association to form a complex. The remaining chapters consider the temperature dependence of ion-molecule reactions, which proceed on a surface with many potential energy minima, specifically the ability to establish asymptotic limits for the reaction efficiency dependent upon the number of potential minima and the above relative probabilities. This book is of great value to experimental and theoretical chemists and physicists.
Publisher: Elsevier
ISBN: 1483283623
Category : Science
Languages : en
Pages : 329
Book Description
Advances in Classical Trajectory Methods, Volume 2: Dynamics of Ion-Molecule Complexes is a seven-chapter text that covers the considerable advances in the experimental and theoretical aspects of ion-molecular complexes, with particular emphasis on the dynamics and kinetics of their formation and ensuing unimolecular dissociation. This text also considers the development and testing of theoretical models for these formation and decomposition processes. The opening chapters discuss photoelectron photoion coincidence, ion cyclotron resonance, and crossed molecular beam studies of metastable ion-molecule complexes formed in ion-molecule collisions. These experimental studies involve comparisons with the predictions of statistical models, such as the Rice-Ramsperger-Kassel-Marcus and phase space theories, and comparisons with the reaction dynamics predicted by classical trajectory calculations. The succeeding chapter describes the double-well model for ion-molecular reactions taking place on a potential energy surface with a central barrier that separates two potential energy minima. These topics are followed by reviews of the quantum chemical calculation and reaction path Hamiltonian analysis of SN2 reactions, the transition state theory for ion-dipole and ion-quadrupole capture, and the capture and dynamical models for ion-molecule association to form a complex. The remaining chapters consider the temperature dependence of ion-molecule reactions, which proceed on a surface with many potential energy minima, specifically the ability to establish asymptotic limits for the reaction efficiency dependent upon the number of potential minima and the above relative probabilities. This book is of great value to experimental and theoretical chemists and physicists.
Relativistic Fluid Dynamics In and Out of Equilibrium
Author: Paul Romatschke
Publisher: Cambridge University Press
ISBN: 1108579353
Category : Science
Languages : en
Pages : 207
Book Description
The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.
Publisher: Cambridge University Press
ISBN: 1108579353
Category : Science
Languages : en
Pages : 207
Book Description
The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.
Filamentary Ion Flow
Author: Francesco Lattarulo
Publisher: John Wiley & Sons
ISBN: 1118821068
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational electrostatics in the presence of flowing space charge. Based on years of extensive lab tests pertaining to the physical performance of unipolar corona ion flows, the book covers the enlarging of conventional electrostatic applications, which allows for some emerging and uncharted interests to be explored. Filamentary Ion Flow: Examines the theoretical discussions for creating a model of computational electrostatics involved with flowing space charges Presents new theory and experimental data based on extensive testing Offers potential design applications utilizing the theory Helps scientists who are involved in electromagnetic and electrostatic studies understand and accurately calculate corona originated ion flow fields Filamentary Ion Flow: Theory and Experiments is ideal for electrical engineers and research scientists interested in high-voltage technology, computational electrostatics, and electromagnetic theory.
Publisher: John Wiley & Sons
ISBN: 1118821068
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational electrostatics in the presence of flowing space charge. Based on years of extensive lab tests pertaining to the physical performance of unipolar corona ion flows, the book covers the enlarging of conventional electrostatic applications, which allows for some emerging and uncharted interests to be explored. Filamentary Ion Flow: Examines the theoretical discussions for creating a model of computational electrostatics involved with flowing space charges Presents new theory and experimental data based on extensive testing Offers potential design applications utilizing the theory Helps scientists who are involved in electromagnetic and electrostatic studies understand and accurately calculate corona originated ion flow fields Filamentary Ion Flow: Theory and Experiments is ideal for electrical engineers and research scientists interested in high-voltage technology, computational electrostatics, and electromagnetic theory.
Astronautics Information
Author: Jet Propulsion Laboratory (U.S.)
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 682
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 682
Book Description
Catalog of Copyright Entries. Third Series
Author: Library of Congress. Copyright Office
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1152
Book Description
Includes Part 1, Number 1: Books and Pamphlets, Including Serials and Contributions to Periodicals (January - June)
Publisher: Copyright Office, Library of Congress
ISBN:
Category : Copyright
Languages : en
Pages : 1152
Book Description
Includes Part 1, Number 1: Books and Pamphlets, Including Serials and Contributions to Periodicals (January - June)