Theory and Methods of Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory and Methods of Statistics PDF full book. Access full book title Theory and Methods of Statistics by P.K. Bhattacharya. Download full books in PDF and EPUB format.

Theory and Methods of Statistics

Theory and Methods of Statistics PDF Author: P.K. Bhattacharya
Publisher: Academic Press
ISBN: 0128041234
Category : Mathematics
Languages : en
Pages : 546

Book Description
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures

Theory and Methods of Statistics

Theory and Methods of Statistics PDF Author: P.K. Bhattacharya
Publisher: Academic Press
ISBN: 0128041234
Category : Mathematics
Languages : en
Pages : 546

Book Description
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466

Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Statistics for High-Dimensional Data

Statistics for High-Dimensional Data PDF Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568

Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Statistical Methods

Statistical Methods PDF Author: Rudolf J. Freund
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694

Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters

Statistics

Statistics PDF Author: Donald A. Berry
Publisher: Duxbury Resource Center
ISBN:
Category : Mathematics
Languages : en
Pages : 728

Book Description
1. Probability 2. Discrete Random Variables 3. Averages 4. Bernoulli and Related Variables 5. Continuous Random Variables 6. Families of Continuous Distributions 7. Organizing and Describing Data 8. Samples, Statistics, and Sampling Distributions 9. Estimation 10. Significance Testing 11. Tests as Decision Rules 12. Comparing Two Populations 13. Goodness of Fit 14. Analysis of Variance 15. Regression

Statistics in Theory and Practice

Statistics in Theory and Practice PDF Author: Robert Lupton
Publisher: Princeton University Press
ISBN: 0691213194
Category : Mathematics
Languages : en
Pages : 200

Book Description
Aimed at a diverse scientific audience, including physicists, astronomers, chemists, geologists, and economists, this book explains the theory underlying the classical statistical methods. Its level is between introductory "how to" texts and intimidating mathematical monographs. A reader without previous exposure to statistics will finish the book with a sound working knowledge of statistical methods, while a reader already familiar with the standard tests will come away with an understanding of their strengths, weaknesses, and domains of applicability. The mathematical level is that of an advanced undergraduate; for example, matrices and Fourier analysis are used where appropriate. Among the topics covered are common probability distributions; sampling and the distribution of sampling statistics; confidence intervals, hypothesis testing, and the theory of tests; estimation (including maximum likelihood); goodness of fit (including c2 and Kolmogorov-Smirnov tests); and non-parametric and rank tests. There are nearly one hundred problems (with answers) designed to bring out points in the text and to cover topics slightly outside the main line of development.

Theory of Statistics

Theory of Statistics PDF Author: Mark J. Schervish
Publisher: Springer Science & Business Media
ISBN: 1461242509
Category : Mathematics
Languages : en
Pages : 732

Book Description
The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.

The Methods of Distances in the Theory of Probability and Statistics

The Methods of Distances in the Theory of Probability and Statistics PDF Author: Svetlozar T. Rachev
Publisher: Springer Science & Business Media
ISBN: 1461448697
Category : Mathematics
Languages : en
Pages : 616

Book Description
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute—Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

Theory-Based Data Analysis for the Social Sciences

Theory-Based Data Analysis for the Social Sciences PDF Author: Carol S. Aneshensel
Publisher: SAGE
ISBN: 1412994357
Category : Reference
Languages : en
Pages : 473

Book Description
This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.

Asymptotic Methods in Statistical Decision Theory

Asymptotic Methods in Statistical Decision Theory PDF Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461249465
Category : Mathematics
Languages : en
Pages : 767

Book Description
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.