Author: John C. Reynolds
Publisher: Cambridge University Press
ISBN: 1139936255
Category : Computers
Languages : en
Pages : 514
Book Description
First published in 1998, this textbook is a broad but rigourous survey of the theoretical basis for the design, definition and implementation of programming languages and of systems for specifying and proving programme behaviour. Both imperative and functional programming are covered, as well as the ways of integrating these aspects into more general languages. Recognising a unity of technique beneath the diversity of research in programming languages, the author presents an integrated treatment of the basic principles of the subject. He identifies the relatively small number of concepts, such as compositional semantics, binding structure, domains, transition systems and inference rules, that serve as the foundation of the field. Assuming only knowledge of elementary programming and mathematics, this text is perfect for advanced undergraduate and beginning graduate courses in programming language theory and also will appeal to researchers and professionals in designing or implementing computer languages.
Theories of Programming Languages
Author: John C. Reynolds
Publisher: Cambridge University Press
ISBN: 1139936255
Category : Computers
Languages : en
Pages : 514
Book Description
First published in 1998, this textbook is a broad but rigourous survey of the theoretical basis for the design, definition and implementation of programming languages and of systems for specifying and proving programme behaviour. Both imperative and functional programming are covered, as well as the ways of integrating these aspects into more general languages. Recognising a unity of technique beneath the diversity of research in programming languages, the author presents an integrated treatment of the basic principles of the subject. He identifies the relatively small number of concepts, such as compositional semantics, binding structure, domains, transition systems and inference rules, that serve as the foundation of the field. Assuming only knowledge of elementary programming and mathematics, this text is perfect for advanced undergraduate and beginning graduate courses in programming language theory and also will appeal to researchers and professionals in designing or implementing computer languages.
Publisher: Cambridge University Press
ISBN: 1139936255
Category : Computers
Languages : en
Pages : 514
Book Description
First published in 1998, this textbook is a broad but rigourous survey of the theoretical basis for the design, definition and implementation of programming languages and of systems for specifying and proving programme behaviour. Both imperative and functional programming are covered, as well as the ways of integrating these aspects into more general languages. Recognising a unity of technique beneath the diversity of research in programming languages, the author presents an integrated treatment of the basic principles of the subject. He identifies the relatively small number of concepts, such as compositional semantics, binding structure, domains, transition systems and inference rules, that serve as the foundation of the field. Assuming only knowledge of elementary programming and mathematics, this text is perfect for advanced undergraduate and beginning graduate courses in programming language theory and also will appeal to researchers and professionals in designing or implementing computer languages.
Introduction to the Theory of Programming Languages
Author: Gilles Dowek
Publisher: Springer Science & Business Media
ISBN: 0857290762
Category : Computers
Languages : en
Pages : 102
Book Description
The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.
Publisher: Springer Science & Business Media
ISBN: 0857290762
Category : Computers
Languages : en
Pages : 102
Book Description
The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.
Concepts in Programming Languages
Author: John C. Mitchell
Publisher: Cambridge University Press
ISBN: 9780521780988
Category : Computers
Languages : en
Pages : 546
Book Description
A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.
Publisher: Cambridge University Press
ISBN: 9780521780988
Category : Computers
Languages : en
Pages : 546
Book Description
A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.
Semantics of Programming Languages
Author: Carl A. Gunter
Publisher: MIT Press
ISBN: 9780262570954
Category : Computers
Languages : en
Pages : 450
Book Description
Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi. Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.
Publisher: MIT Press
ISBN: 9780262570954
Category : Computers
Languages : en
Pages : 450
Book Description
Semantics of Programming Languages exposes the basic motivations and philosophy underlying the applications of semantic techniques in computer science. It introduces the mathematical theory of programming languages with an emphasis on higher-order functions and type systems. Designed as a text for upper-level and graduate-level students, the mathematically sophisticated approach will also prove useful to professionals who want an easily referenced description of fundamental results and calculi. Basic connections between computational behavior, denotational semantics, and the equational logic of functional programs are thoroughly and rigorously developed. Topics covered include models of types, operational semantics, category theory, domain theory, fixed point (denotational). semantics, full abstraction and other semantic correspondence criteria, types and evaluation, type checking and inference, parametric polymorphism, and subtyping. All topics are treated clearly and in depth, with complete proofs for the major results and numerous exercises.
A Practical Theory of Programming
Author: Eric C.R. Hehner
Publisher: Springer Science & Business Media
ISBN: 1441985964
Category : Computers
Languages : en
Pages : 257
Book Description
There are several theories of programming. The first usable theory, often called "Hoare's Logic", is still probably the most widely known. In it, a specification is a pair of predicates: a precondition and postcondition (these and all technical terms will be defined in due course). Another popular and closely related theory by Dijkstra uses the weakest precondition predicate transformer, which is a function from programs and postconditions to preconditions. lones's Vienna Development Method has been used to advantage in some industries; in it, a specification is a pair of predicates (as in Hoare's Logic), but the second predicate is a relation. Temporal Logic is yet another formalism that introduces some special operators and quantifiers to describe some aspects of computation. The theory in this book is simpler than any of those just mentioned. In it, a specification is just a boolean expression. Refinement is just ordinary implication. This theory is also more general than those just mentioned, applying to both terminating and nonterminating computation, to both sequential and parallel computation, to both stand-alone and interactive computation. And it includes time bounds, both for algorithm classification and for tightly constrained real-time applications.
Publisher: Springer Science & Business Media
ISBN: 1441985964
Category : Computers
Languages : en
Pages : 257
Book Description
There are several theories of programming. The first usable theory, often called "Hoare's Logic", is still probably the most widely known. In it, a specification is a pair of predicates: a precondition and postcondition (these and all technical terms will be defined in due course). Another popular and closely related theory by Dijkstra uses the weakest precondition predicate transformer, which is a function from programs and postconditions to preconditions. lones's Vienna Development Method has been used to advantage in some industries; in it, a specification is a pair of predicates (as in Hoare's Logic), but the second predicate is a relation. Temporal Logic is yet another formalism that introduces some special operators and quantifiers to describe some aspects of computation. The theory in this book is simpler than any of those just mentioned. In it, a specification is just a boolean expression. Refinement is just ordinary implication. This theory is also more general than those just mentioned, applying to both terminating and nonterminating computation, to both sequential and parallel computation, to both stand-alone and interactive computation. And it includes time bounds, both for algorithm classification and for tightly constrained real-time applications.
Types and Programming Languages
Author: Benjamin C. Pierce
Publisher: MIT Press
ISBN: 9780262162098
Category : Computers
Languages : en
Pages : 656
Book Description
A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.
Publisher: MIT Press
ISBN: 9780262162098
Category : Computers
Languages : en
Pages : 656
Book Description
A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.
Practical Foundations for Programming Languages
Author: Robert Harper
Publisher: Cambridge University Press
ISBN: 1107150302
Category : Computers
Languages : en
Pages : 513
Book Description
This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.
Publisher: Cambridge University Press
ISBN: 1107150302
Category : Computers
Languages : en
Pages : 513
Book Description
This book unifies a broad range of programming language concepts under the framework of type systems and structural operational semantics.
Type Theory and Formal Proof
Author: Rob Nederpelt
Publisher: Cambridge University Press
ISBN: 1316061086
Category : Computers
Languages : en
Pages : 465
Book Description
Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.
Publisher: Cambridge University Press
ISBN: 1316061086
Category : Computers
Languages : en
Pages : 465
Book Description
Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.
Programming Language Fundamentals by Example
Author: D.E. Stevenson
Publisher: CRC Press
ISBN: 1000654648
Category : Computers
Languages : en
Pages : 189
Book Description
Written in an informal yet informative style, Programming Language Fundamentals by Example uses active learning techniques, giving students a professional learning experience based on professional methods applied with professional standards. It provides an understanding of the many languages and notations used in computer science, the formal models
Publisher: CRC Press
ISBN: 1000654648
Category : Computers
Languages : en
Pages : 189
Book Description
Written in an informal yet informative style, Programming Language Fundamentals by Example uses active learning techniques, giving students a professional learning experience based on professional methods applied with professional standards. It provides an understanding of the many languages and notations used in computer science, the formal models
Design Concepts in Programming Languages
Author: Franklyn Turbak
Publisher: MIT Press
ISBN: 0262303159
Category : Computers
Languages : en
Pages : 1347
Book Description
Key ideas in programming language design and implementation explained using a simple and concise framework; a comprehensive introduction suitable for use as a textbook or a reference for researchers. Hundreds of programming languages are in use today—scripting languages for Internet commerce, user interface programming tools, spreadsheet macros, page format specification languages, and many others. Designing a programming language is a metaprogramming activity that bears certain similarities to programming in a regular language, with clarity and simplicity even more important than in ordinary programming. This comprehensive text uses a simple and concise framework to teach key ideas in programming language design and implementation. The book's unique approach is based on a family of syntactically simple pedagogical languages that allow students to explore programming language concepts systematically. It takes as premise and starting point the idea that when language behaviors become incredibly complex, the description of the behaviors must be incredibly simple. The book presents a set of tools (a mathematical metalanguage, abstract syntax, operational and denotational semantics) and uses it to explore a comprehensive set of programming language design dimensions, including dynamic semantics (naming, state, control, data), static semantics (types, type reconstruction, polymporphism, effects), and pragmatics (compilation, garbage collection). The many examples and exercises offer students opportunities to apply the foundational ideas explained in the text. Specialized topics and code that implements many of the algorithms and compilation methods in the book can be found on the book's Web site, along with such additional material as a section on concurrency and proofs of the theorems in the text. The book is suitable as a text for an introductory graduate or advanced undergraduate programming languages course; it can also serve as a reference for researchers and practitioners.
Publisher: MIT Press
ISBN: 0262303159
Category : Computers
Languages : en
Pages : 1347
Book Description
Key ideas in programming language design and implementation explained using a simple and concise framework; a comprehensive introduction suitable for use as a textbook or a reference for researchers. Hundreds of programming languages are in use today—scripting languages for Internet commerce, user interface programming tools, spreadsheet macros, page format specification languages, and many others. Designing a programming language is a metaprogramming activity that bears certain similarities to programming in a regular language, with clarity and simplicity even more important than in ordinary programming. This comprehensive text uses a simple and concise framework to teach key ideas in programming language design and implementation. The book's unique approach is based on a family of syntactically simple pedagogical languages that allow students to explore programming language concepts systematically. It takes as premise and starting point the idea that when language behaviors become incredibly complex, the description of the behaviors must be incredibly simple. The book presents a set of tools (a mathematical metalanguage, abstract syntax, operational and denotational semantics) and uses it to explore a comprehensive set of programming language design dimensions, including dynamic semantics (naming, state, control, data), static semantics (types, type reconstruction, polymporphism, effects), and pragmatics (compilation, garbage collection). The many examples and exercises offer students opportunities to apply the foundational ideas explained in the text. Specialized topics and code that implements many of the algorithms and compilation methods in the book can be found on the book's Web site, along with such additional material as a section on concurrency and proofs of the theorems in the text. The book is suitable as a text for an introductory graduate or advanced undergraduate programming languages course; it can also serve as a reference for researchers and practitioners.