Author: Bruce Hunt
Publisher: Springer
ISBN: 354069997X
Category : Mathematics
Languages : en
Pages : 347
Book Description
The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.
The Geometry of some special Arithmetic Quotients
Author: Bruce Hunt
Publisher: Springer
ISBN: 354069997X
Category : Mathematics
Languages : en
Pages : 347
Book Description
The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.
Publisher: Springer
ISBN: 354069997X
Category : Mathematics
Languages : en
Pages : 347
Book Description
The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.
Arithmetic, Geometry, Cryptography and Coding Theory
Author: Alp Bassa
Publisher: American Mathematical Soc.
ISBN: 1470428105
Category : Computers
Languages : en
Pages : 210
Book Description
This volume contains the proceedings of the 15th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held at the Centre International de Rencontres Mathématiques in Marseille, France, from May 18–22, 2015. Since the first meeting almost 30 years ago, the biennial AGCT meetings have been one of the main events bringing together researchers interested in explicit aspects of arithmetic geometry and applications to coding theory and cryptography. This volume contains original research articles reflecting recent developments in the field.
Publisher: American Mathematical Soc.
ISBN: 1470428105
Category : Computers
Languages : en
Pages : 210
Book Description
This volume contains the proceedings of the 15th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held at the Centre International de Rencontres Mathématiques in Marseille, France, from May 18–22, 2015. Since the first meeting almost 30 years ago, the biennial AGCT meetings have been one of the main events bringing together researchers interested in explicit aspects of arithmetic geometry and applications to coding theory and cryptography. This volume contains original research articles reflecting recent developments in the field.
The Arithmetic and Geometry of Algebraic Cycles
Author: B. Brent Gordon
Publisher: American Mathematical Soc.
ISBN: 9780821870204
Category : Mathematics
Languages : en
Pages : 468
Book Description
From the June 1998 Summer School come 20 contributions that explore algebraic cycles (a subfield of algebraic geometry) from a variety of perspectives. The papers have been organized into sections on cohomological methods, Chow groups and motives, and arithmetic methods. Some specific topics include logarithmic Hodge structures and classifying spaces; Bloch's conjecture and the K-theory of projective surfaces; and torsion zero-cycles and the Abel-Jacobi map over the real numbers.
Publisher: American Mathematical Soc.
ISBN: 9780821870204
Category : Mathematics
Languages : en
Pages : 468
Book Description
From the June 1998 Summer School come 20 contributions that explore algebraic cycles (a subfield of algebraic geometry) from a variety of perspectives. The papers have been organized into sections on cohomological methods, Chow groups and motives, and arithmetic methods. Some specific topics include logarithmic Hodge structures and classifying spaces; Bloch's conjecture and the K-theory of projective surfaces; and torsion zero-cycles and the Abel-Jacobi map over the real numbers.
Geometry of Algebraic Curves
Author: Enrico Arbarello
Publisher: Springer Science & Business Media
ISBN: 3540693920
Category : Mathematics
Languages : en
Pages : 983
Book Description
The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material is of value to students who wish to learn the subject and to experts as a reference source. The first volume appeared 1985 as vol. 267 of the same series.
Publisher: Springer Science & Business Media
ISBN: 3540693920
Category : Mathematics
Languages : en
Pages : 983
Book Description
The second volume of the Geometry of Algebraic Curves is devoted to the foundations of the theory of moduli of algebraic curves. Its authors are research mathematicians who have actively participated in the development of the Geometry of Algebraic Curves. The subject is an extremely fertile and active one, both within the mathematical community and at the interface with the theoretical physics community. The approach is unique in its blending of algebro-geometric, complex analytic and topological/combinatorial methods. It treats important topics such as Teichmüller theory, the cellular decomposition of moduli and its consequences and the Witten conjecture. The careful and comprehensive presentation of the material is of value to students who wish to learn the subject and to experts as a reference source. The first volume appeared 1985 as vol. 267 of the same series.
Automorphic Forms and Geometry of Arithmetic Varieties
Author: K. Hashimoto
Publisher: Academic Press
ISBN: 1483218074
Category : Mathematics
Languages : en
Pages : 540
Book Description
Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.
Publisher: Academic Press
ISBN: 1483218074
Category : Mathematics
Languages : en
Pages : 540
Book Description
Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.
Arithmetic Geometry: Computation and Applications
Author: Yves Aubry
Publisher: American Mathematical Soc.
ISBN: 1470442124
Category : Computers
Languages : en
Pages : 186
Book Description
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.
Publisher: American Mathematical Soc.
ISBN: 1470442124
Category : Computers
Languages : en
Pages : 186
Book Description
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.
Several Complex Variables and Complex Geometry, Part II
Author: Eric Bedford
Publisher: American Mathematical Soc.
ISBN: 0821814907
Category : Mathematics
Languages : en
Pages : 644
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821814907
Category : Mathematics
Languages : en
Pages : 644
Book Description
L2-Invariants: Theory and Applications to Geometry and K-Theory
Author: Wolfgang Lück
Publisher: Springer Science & Business Media
ISBN: 3662046873
Category : Mathematics
Languages : en
Pages : 604
Book Description
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Publisher: Springer Science & Business Media
ISBN: 3662046873
Category : Mathematics
Languages : en
Pages : 604
Book Description
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Arithmetic Geometry
Author: G. Cornell
Publisher: Springer Science & Business Media
ISBN: 1461386551
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.
Publisher: Springer Science & Business Media
ISBN: 1461386551
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.
Algebraic Structures of Symmetric Domains
Author: Ichiro Satake
Publisher: Princeton University Press
ISBN: 1400856809
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book is a comprehensive treatment of the general (algebraic) theory of symmetric domains. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400856809
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book is a comprehensive treatment of the general (algebraic) theory of symmetric domains. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.