Author: R Sivaramakrishnan
Publisher: Routledge
ISBN: 135146051X
Category : Mathematics
Languages : en
Pages : 416
Book Description
This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati
Classical Theory of Arithmetic Functions
Author: R Sivaramakrishnan
Publisher: Routledge
ISBN: 135146051X
Category : Mathematics
Languages : en
Pages : 416
Book Description
This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati
Publisher: Routledge
ISBN: 135146051X
Category : Mathematics
Languages : en
Pages : 416
Book Description
This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati
Arithmetic Functions and Integer Products
Author: P.D.T.A. Elliott
Publisher: Springer Science & Business Media
ISBN: 1461385482
Category : Mathematics
Languages : en
Pages : 469
Book Description
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.
Publisher: Springer Science & Business Media
ISBN: 1461385482
Category : Mathematics
Languages : en
Pages : 469
Book Description
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.
Introduction to the Arithmetic Theory of Automorphic Functions
Author: Gorō Shimura
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Classical Theory of Arithmetic Functions
Author: R Sivaramakrishnan
Publisher: Routledge
ISBN: 1351460528
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati
Publisher: Routledge
ISBN: 1351460528
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati
An Introduction to the Theory of Numbers
Author: Leo Moser
Publisher: The Trillia Group
ISBN: 1931705011
Category : Mathematics
Languages : en
Pages : 95
Book Description
"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description
Publisher: The Trillia Group
ISBN: 1931705011
Category : Mathematics
Languages : en
Pages : 95
Book Description
"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description
The Theory of Arithmetic Functions
Author: Anthony A. Gioia
Publisher: Springer
ISBN: 3540370986
Category : Mathematics
Languages : en
Pages : 291
Book Description
Publisher: Springer
ISBN: 3540370986
Category : Mathematics
Languages : en
Pages : 291
Book Description
Various Arithmetic Functions and their Applications
Author: Octavian Cira
Publisher: Infinite Study
ISBN: 1599733722
Category : Arithmetic functions
Languages : en
Pages : 402
Book Description
Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factorials, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, Romania). This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equations", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to propose new areas of study in number theory, and Octavian Cira - with his algorithmic thinking and knowledge of Mathcad.
Publisher: Infinite Study
ISBN: 1599733722
Category : Arithmetic functions
Languages : en
Pages : 402
Book Description
Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factorials, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, Romania). This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equations", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to propose new areas of study in number theory, and Octavian Cira - with his algorithmic thinking and knowledge of Mathcad.
Arithmetic Functions
Author: József Sándor
Publisher: Nova Science Publishers
ISBN: 9781536196771
Category : Mathematics
Languages : en
Pages : 253
Book Description
"This monograph is devoted to arithmetic functions, an area of number theory. Arithmetic functions are very important in many parts of theoretical and applied sciences, and many mathematicians have devoted great interest in this field. One of the interesting features of this book is the introduction and study of certain new arithmetic functions that have been considered by the authors separately or together, and their importance is shown in many connections with the classical arithmetic functions or in their applications to other problems"--
Publisher: Nova Science Publishers
ISBN: 9781536196771
Category : Mathematics
Languages : en
Pages : 253
Book Description
"This monograph is devoted to arithmetic functions, an area of number theory. Arithmetic functions are very important in many parts of theoretical and applied sciences, and many mathematicians have devoted great interest in this field. One of the interesting features of this book is the introduction and study of certain new arithmetic functions that have been considered by the authors separately or together, and their importance is shown in many connections with the classical arithmetic functions or in their applications to other problems"--
Number Theory in Function Fields
Author: Michael Rosen
Publisher: Springer Science & Business Media
ISBN: 1475760469
Category : Mathematics
Languages : en
Pages : 355
Book Description
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Publisher: Springer Science & Business Media
ISBN: 1475760469
Category : Mathematics
Languages : en
Pages : 355
Book Description
Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Publisher: American Mathematical Soc.
ISBN: 147045016X
Category : Mathematics
Languages : en
Pages : 506
Book Description
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.