Author: Helene Lefebvre-Brion
Publisher: Elsevier
ISBN: 0080517501
Category : Science
Languages : en
Pages : 797
Book Description
This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's cases), construction of effective Hamiltonian matrices to represent both spectra and dynamics, terms neglected in the Born-Oppenheimer approximation (situations intermediate between Hund's cases, spectroscopic perturbations), nonlinear least squares fitting, calculation and interpretation of coupling terms, semi-classical (WKB) approximation, transition intensities and interference effects, direct photofragmentation (dissociation and ionization) and indirect photofragmentation (predissociation and autoionization) processes, visualization of intramolecular dynamics, quantum beats and wavepackets, treatment of decaying quasi-eigenstates using a complex Heff model, and concluding with some examples of polyatomic molecule dynamics. Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties. Professional spectroscopists, kinetics, ab initio theorists will appreciate the practical, simplified-model, and rigorous theoretical approaches discussed in this book. - A fundamental reference for all spectra of small, gas-phase molecules - It is the most up-to-date and comprehensive book on the electronic spectroscopy and dynamics of diatomic molecules - The authors pioneered the development of many of the experimental methods, concepts, models, and computational schemes described in this book
The Spectra and Dynamics of Diatomic Molecules
Author: Helene Lefebvre-Brion
Publisher: Elsevier
ISBN: 0080517501
Category : Science
Languages : en
Pages : 797
Book Description
This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's cases), construction of effective Hamiltonian matrices to represent both spectra and dynamics, terms neglected in the Born-Oppenheimer approximation (situations intermediate between Hund's cases, spectroscopic perturbations), nonlinear least squares fitting, calculation and interpretation of coupling terms, semi-classical (WKB) approximation, transition intensities and interference effects, direct photofragmentation (dissociation and ionization) and indirect photofragmentation (predissociation and autoionization) processes, visualization of intramolecular dynamics, quantum beats and wavepackets, treatment of decaying quasi-eigenstates using a complex Heff model, and concluding with some examples of polyatomic molecule dynamics. Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties. Professional spectroscopists, kinetics, ab initio theorists will appreciate the practical, simplified-model, and rigorous theoretical approaches discussed in this book. - A fundamental reference for all spectra of small, gas-phase molecules - It is the most up-to-date and comprehensive book on the electronic spectroscopy and dynamics of diatomic molecules - The authors pioneered the development of many of the experimental methods, concepts, models, and computational schemes described in this book
Publisher: Elsevier
ISBN: 0080517501
Category : Science
Languages : en
Pages : 797
Book Description
This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's cases), construction of effective Hamiltonian matrices to represent both spectra and dynamics, terms neglected in the Born-Oppenheimer approximation (situations intermediate between Hund's cases, spectroscopic perturbations), nonlinear least squares fitting, calculation and interpretation of coupling terms, semi-classical (WKB) approximation, transition intensities and interference effects, direct photofragmentation (dissociation and ionization) and indirect photofragmentation (predissociation and autoionization) processes, visualization of intramolecular dynamics, quantum beats and wavepackets, treatment of decaying quasi-eigenstates using a complex Heff model, and concluding with some examples of polyatomic molecule dynamics. Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties. Professional spectroscopists, kinetics, ab initio theorists will appreciate the practical, simplified-model, and rigorous theoretical approaches discussed in this book. - A fundamental reference for all spectra of small, gas-phase molecules - It is the most up-to-date and comprehensive book on the electronic spectroscopy and dynamics of diatomic molecules - The authors pioneered the development of many of the experimental methods, concepts, models, and computational schemes described in this book
The Spectra and Dynamics of Diatomic Molecules
Author: Helene Lefebvre-Brion
Publisher: Academic Press
ISBN: 0124414559
Category : Science
Languages : en
Pages : 797
Book Description
And concluding with some examples of polyatomic molecule dynamics. P Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties.-
Publisher: Academic Press
ISBN: 0124414559
Category : Science
Languages : en
Pages : 797
Book Description
And concluding with some examples of polyatomic molecule dynamics. P Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties.-
Spectra and Dynamics of Small Molecules
Author: Robert W. Field
Publisher: Springer
ISBN: 3319159585
Category : Science
Languages : en
Pages : 162
Book Description
These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking special topics that have fascinated the author and his students over the years. Though neither a textbook nor a scholarly monograph, the book provides an illuminating perspective that will benefit students and researchers alike.
Publisher: Springer
ISBN: 3319159585
Category : Science
Languages : en
Pages : 162
Book Description
These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking special topics that have fascinated the author and his students over the years. Though neither a textbook nor a scholarly monograph, the book provides an illuminating perspective that will benefit students and researchers alike.
Rotational Spectroscopy of Diatomic Molecules
Author: John M. Brown
Publisher: Cambridge University Press
ISBN: 9780521530781
Category : Science
Languages : en
Pages : 1074
Book Description
The definitive text on the rotational spectroscopy of diatomic molecules.
Publisher: Cambridge University Press
ISBN: 9780521530781
Category : Science
Languages : en
Pages : 1074
Book Description
The definitive text on the rotational spectroscopy of diatomic molecules.
The Iodine Molecule
Author: Sergey Lukashov
Publisher: Springer
ISBN: 3319700723
Category : Science
Languages : en
Pages : 209
Book Description
This book presents experimental and theoretical spectroscopic studies performed over the last 25 years on the iodine molecule’s excited states and their perturbations. It is going to be of interest to researchers who study intra- and intermolecular perturbations in diatomic molecules and more complex systems. The book offers a detailed treatment of the nonadiabatic perturbations of valence, ion-pair and Rydberg states induced by intramolecular as well as intermolecular interactions in collisions or in weakly-bound complexes. It also provides an overview of current instrumentation and techniques as well as theoretical approaches describing intra- and intermolecular perturbations. The authors are experts in the use of spectroscopy for the study of intrinsic and collision-induced perturbations in diatomic iodine. They introduced a new method of three-step optical population of the iodine ion-pair states. The iodine molecule has 23 valence states correlating with three dissociation limits, 20 so-called ion-pair states, nestled in four tiers and a multitude of Rydberg states. All the states have different angular momenta, parities and very dense rovibronic levels. Moreover, perturbations caused by atomic or molecular partners lead to effective nonadiabatic transitions. For these reasons the authors propose this molecule as a model system for spectroscopic studies of intra- and intermolecular perturbations in other diatomic molecules.
Publisher: Springer
ISBN: 3319700723
Category : Science
Languages : en
Pages : 209
Book Description
This book presents experimental and theoretical spectroscopic studies performed over the last 25 years on the iodine molecule’s excited states and their perturbations. It is going to be of interest to researchers who study intra- and intermolecular perturbations in diatomic molecules and more complex systems. The book offers a detailed treatment of the nonadiabatic perturbations of valence, ion-pair and Rydberg states induced by intramolecular as well as intermolecular interactions in collisions or in weakly-bound complexes. It also provides an overview of current instrumentation and techniques as well as theoretical approaches describing intra- and intermolecular perturbations. The authors are experts in the use of spectroscopy for the study of intrinsic and collision-induced perturbations in diatomic iodine. They introduced a new method of three-step optical population of the iodine ion-pair states. The iodine molecule has 23 valence states correlating with three dissociation limits, 20 so-called ion-pair states, nestled in four tiers and a multitude of Rydberg states. All the states have different angular momenta, parities and very dense rovibronic levels. Moreover, perturbations caused by atomic or molecular partners lead to effective nonadiabatic transitions. For these reasons the authors propose this molecule as a model system for spectroscopic studies of intra- and intermolecular perturbations in other diatomic molecules.
Atomic Spectra and Atomic Structure
Author: Gerhard Herzberg
Publisher: Courier Corporation
ISBN: 9780486601151
Category : Science
Languages : en
Pages : 292
Book Description
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
Publisher: Courier Corporation
ISBN: 9780486601151
Category : Science
Languages : en
Pages : 292
Book Description
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors
Author: Laszlo Nemes
Publisher: World Scientific
ISBN: 9812837647
Category : Science
Languages : en
Pages : 536
Book Description
This book is a stop-gap contribution to the science and technology of carbon plasmas and carbon vapors. It strives to cover two strongly related fields: the molecular quantum theory of carbon plasmas and carbon nanostructures; and the molecular and atomic spectroscopy of such plasmas and vapors. These two fields of research are strongly intertwined and thus reinforce one another.Even though the use of carbon nanostructures is increasing by the day and their practical uses are emerging, there is no modern review on carbon plasmas, especially from molecular theoretical and spectroscopic viewpoints. The importance of the present book is therefore great from both educational and practical aspects. This review might be the first step towards bringing such textbooks into existence for university education. Similarly, for applied and engineering works in carbon nanostructures, the book provides a theoretical salient point for technologists in the field.
Publisher: World Scientific
ISBN: 9812837647
Category : Science
Languages : en
Pages : 536
Book Description
This book is a stop-gap contribution to the science and technology of carbon plasmas and carbon vapors. It strives to cover two strongly related fields: the molecular quantum theory of carbon plasmas and carbon nanostructures; and the molecular and atomic spectroscopy of such plasmas and vapors. These two fields of research are strongly intertwined and thus reinforce one another.Even though the use of carbon nanostructures is increasing by the day and their practical uses are emerging, there is no modern review on carbon plasmas, especially from molecular theoretical and spectroscopic viewpoints. The importance of the present book is therefore great from both educational and practical aspects. This review might be the first step towards bringing such textbooks into existence for university education. Similarly, for applied and engineering works in carbon nanostructures, the book provides a theoretical salient point for technologists in the field.
Molecular Photophysics and Spectroscopy
Author: David L Andrews
Publisher: Morgan & Claypool Publishers
ISBN: 1627052887
Category : Science
Languages : en
Pages : 94
Book Description
This book provides a fresh, photon‐based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science. The concise and detailed approach includes some of the most recent devel
Publisher: Morgan & Claypool Publishers
ISBN: 1627052887
Category : Science
Languages : en
Pages : 94
Book Description
This book provides a fresh, photon‐based description of modern molecular spectroscopy and photophysics, with applications drawn from chemistry, biology, physics and materials science. The concise and detailed approach includes some of the most recent devel
Spectra of Atoms and Molecules
Author: Peter F. Bernath
Publisher: Oxford University Press
ISBN: 0195346459
Category : Science
Languages : en
Pages : 454
Book Description
Spectra of Atoms and Molecules, 2nd Edition is designed to introduce advanced undergraduates and new graduate students to the vast field of spectroscopy. Of interest to chemists, physicists, astronomers, atmospheric scientists, and engineers, it emphasizes the fundamental principles of spectroscopy with its primary goal being to teach students how to interpret spectra. The book includes a clear presentation of group theory needed for understanding the material and a large number of excellent problems are found at the end of each chapter. In keeping with the visual aspects of the course, the author provides a large number of diagrams and spectra specifically recorded for this book. Topics such as molecular symmetry, matrix representation of groups, quantum mechanics, and group theory are discussed. Analyses are made of atomic, rotational, vibrational, and electronic spectra. Spectra of Atoms and Molecules, 2nd Edition has been updated to include the 1998 revision of physical constants, and conforms more closely to the recommended practice for the use of symbols and units. This new edition has also added material pertaining to line intensities, which can be confusing due to the dozens of different units used to report line and band strengths. Another major change is in author Peter Bernath's discussion of the Raman effect and light scattering, where the standard theoretical treatment is now included. Aimed at new students of spectroscopy regardless of their background, Spectra of Atoms and Molecules will help demystify spectroscopy by showing the necessary steps in a derivation.
Publisher: Oxford University Press
ISBN: 0195346459
Category : Science
Languages : en
Pages : 454
Book Description
Spectra of Atoms and Molecules, 2nd Edition is designed to introduce advanced undergraduates and new graduate students to the vast field of spectroscopy. Of interest to chemists, physicists, astronomers, atmospheric scientists, and engineers, it emphasizes the fundamental principles of spectroscopy with its primary goal being to teach students how to interpret spectra. The book includes a clear presentation of group theory needed for understanding the material and a large number of excellent problems are found at the end of each chapter. In keeping with the visual aspects of the course, the author provides a large number of diagrams and spectra specifically recorded for this book. Topics such as molecular symmetry, matrix representation of groups, quantum mechanics, and group theory are discussed. Analyses are made of atomic, rotational, vibrational, and electronic spectra. Spectra of Atoms and Molecules, 2nd Edition has been updated to include the 1998 revision of physical constants, and conforms more closely to the recommended practice for the use of symbols and units. This new edition has also added material pertaining to line intensities, which can be confusing due to the dozens of different units used to report line and band strengths. Another major change is in author Peter Bernath's discussion of the Raman effect and light scattering, where the standard theoretical treatment is now included. Aimed at new students of spectroscopy regardless of their background, Spectra of Atoms and Molecules will help demystify spectroscopy by showing the necessary steps in a derivation.
Attosecond Molecular Dynamics
Author: Marc J J Vrakking
Publisher: Royal Society of Chemistry
ISBN: 1788015134
Category : Science
Languages : en
Pages : 512
Book Description
Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.
Publisher: Royal Society of Chemistry
ISBN: 1788015134
Category : Science
Languages : en
Pages : 512
Book Description
Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.