Author: Luc Trouche
Publisher: Springer Nature
ISBN: 303020393X
Category : Education
Languages : en
Pages : 564
Book Description
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers’ work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers’ work through their interactions with resources for teaching, held in Lyon, France.
The 'Resource' Approach to Mathematics Education
Author: Luc Trouche
Publisher: Springer Nature
ISBN: 303020393X
Category : Education
Languages : en
Pages : 564
Book Description
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers’ work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers’ work through their interactions with resources for teaching, held in Lyon, France.
Publisher: Springer Nature
ISBN: 303020393X
Category : Education
Languages : en
Pages : 564
Book Description
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers’ work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers’ work through their interactions with resources for teaching, held in Lyon, France.
Strengths-Based Teaching and Learning in Mathematics
Author: Beth McCord Kobett
Publisher: Corwin
ISBN: 1544374909
Category : Education
Languages : en
Pages : 273
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Publisher: Corwin
ISBN: 1544374909
Category : Education
Languages : en
Pages : 273
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Language and Mathematics Education
Author: Judit N. Moschkovich
Publisher: Information Age Pub Incorporated
ISBN: 9781617351594
Category : Education
Languages : en
Pages : 180
Book Description
A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.
Publisher: Information Age Pub Incorporated
ISBN: 9781617351594
Category : Education
Languages : en
Pages : 180
Book Description
A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Scripting Approaches in Mathematics Education
Author: Rina Zazkis
Publisher: Springer
ISBN: 3319626922
Category : Education
Languages : en
Pages : 437
Book Description
This book shows how the practice of script writing can be used both as a pedagogical approach and as a research tool in mathematics education. It provides an opportunity for script-writers to articulate their mathematical arguments and/or their pedagogical approaches. It further provides researchers with a corpus of narratives that can be analyzed using a variety of theoretical perspectives. Various chapters argue for the use of dialogical method and highlight its benefits and special features. The chapters examine both “low tech” implementations as well as the use of a technological platform, LessonSketch. The chapters present results of and insights from several recent studies, which utilized scripting in mathematics education research and practice.
Publisher: Springer
ISBN: 3319626922
Category : Education
Languages : en
Pages : 437
Book Description
This book shows how the practice of script writing can be used both as a pedagogical approach and as a research tool in mathematics education. It provides an opportunity for script-writers to articulate their mathematical arguments and/or their pedagogical approaches. It further provides researchers with a corpus of narratives that can be analyzed using a variety of theoretical perspectives. Various chapters argue for the use of dialogical method and highlight its benefits and special features. The chapters examine both “low tech” implementations as well as the use of a technological platform, LessonSketch. The chapters present results of and insights from several recent studies, which utilized scripting in mathematics education research and practice.
Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8
Author: Jennifer M. Bay-Williams
Publisher: Corwin
ISBN: 1071818430
Category : Education
Languages : en
Pages : 265
Book Description
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
Publisher: Corwin
ISBN: 1071818430
Category : Education
Languages : en
Pages : 265
Book Description
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
Learning and Teaching Early Math
Author: Douglas H. Clements
Publisher: Routledge
ISBN: 1135843791
Category : Education
Languages : en
Pages : 552
Book Description
In this important new book for pre- and in-service teachers, early math experts Douglas Clements and Julie Sarama show how "learning trajectories" help teachers become more effective professionals. By opening up new windows to seeing young children and the inherent delight and curiosity behind their mathematical reasoning, learning trajectories ultimately make teaching more joyous. They help teachers understand the varying level of knowledge and thinking of their classes and the individuals within them as key in serving the needs of all children. In straightforward, no-nonsense language, this book summarizes what is known about how children learn mathematics, and how to build on what they know to realize more effective teaching practice. It will help teachers understand the learning trajectories of early mathematics and become quintessential professionals.
Publisher: Routledge
ISBN: 1135843791
Category : Education
Languages : en
Pages : 552
Book Description
In this important new book for pre- and in-service teachers, early math experts Douglas Clements and Julie Sarama show how "learning trajectories" help teachers become more effective professionals. By opening up new windows to seeing young children and the inherent delight and curiosity behind their mathematical reasoning, learning trajectories ultimately make teaching more joyous. They help teachers understand the varying level of knowledge and thinking of their classes and the individuals within them as key in serving the needs of all children. In straightforward, no-nonsense language, this book summarizes what is known about how children learn mathematics, and how to build on what they know to realize more effective teaching practice. It will help teachers understand the learning trajectories of early mathematics and become quintessential professionals.
The 'resource' Approach to Mathematics Education
Author:
Publisher:
ISBN: 9783030203948
Category : Mathematics
Languages : en
Pages :
Book Description
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers' work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers' work through their interactions with resources for teaching, held in Lyon, France.
Publisher:
ISBN: 9783030203948
Category : Mathematics
Languages : en
Pages :
Book Description
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers' work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers' work through their interactions with resources for teaching, held in Lyon, France.
Improving Primary Mathematics Education, Teaching and Learning
Author: Mellony Graven
Publisher: Springer
ISBN: 1137529806
Category : Education
Languages : en
Pages : 273
Book Description
This book focuses on how to improve the teaching and learning of primary level mathematics education within resource-constrained contexts. It builds on two large numeracy projects within South Africa which speak to broader, global concerns and highlight how research and development not only enables one to meet ethical imperatives but also explore how further interventions can be developed. Teacher and research communities must work together to create mutually beneficial relationships and establish a cohesive understanding of the requirements of primary mathematics education.
Publisher: Springer
ISBN: 1137529806
Category : Education
Languages : en
Pages : 273
Book Description
This book focuses on how to improve the teaching and learning of primary level mathematics education within resource-constrained contexts. It builds on two large numeracy projects within South Africa which speak to broader, global concerns and highlight how research and development not only enables one to meet ethical imperatives but also explore how further interventions can be developed. Teacher and research communities must work together to create mutually beneficial relationships and establish a cohesive understanding of the requirements of primary mathematics education.
Teaching Mathematics in the Primary School
Author: Gill Bottle
Publisher: A&C Black
ISBN: 0826472591
Category : Education
Languages : en
Pages : 220
Book Description
Numerous examples from early years and primary classrooms are included as well as checklists and helpful advice. There are also suggestions for further reading to assist trainee and newly qualified teachers in meeting the Standards for Initial Teacher Training and Induction.
Publisher: A&C Black
ISBN: 0826472591
Category : Education
Languages : en
Pages : 220
Book Description
Numerous examples from early years and primary classrooms are included as well as checklists and helpful advice. There are also suggestions for further reading to assist trainee and newly qualified teachers in meeting the Standards for Initial Teacher Training and Induction.