Author: Sheng Lin
Publisher: Elsevier
ISBN: 0323150276
Category : Science
Languages : en
Pages : 440
Book Description
Radiationless Transitions is a critical discussion of research studies on the theory and experiments in radiationless transitions. This book is composed of nine chapters, and begins with discussions on the theory and experiment of photophysical processes of single vibronic levels and/or single rovibronic levels. The subsequent chapters deal with the spectroscopic investigations of intramolecular vibrational relaxation; the dynamics of molecular excitation by light; and the photophysical processes of small molecules in condensed phase. The discussions then shift to the high pressure effects on molecular luminescence and the internal conversion involving localized excitations, presenting one qualitative and one quantitative example, as well as the intersystem crossing with localized excitations. A chapter explores the energy transfer processes that occur after a molecule in solution is excited by light, with an emphasis on solid solutions in which the large amplitude molecular motion is largely quenched. This chapter also looks into the liquid solutions in which the molecules can translate and rotate under the influence of fluctuating forces from the liquid. The concluding chapter focuses on ultrafast processes. Researchers in the fields of physics, chemistry, and biology will benefit from this book.
Radiationless Transitions
Dynamics of Molecular Collisions
Author: W. Miller
Publisher: Springer Science & Business Media
ISBN: 1461588677
Category : Science
Languages : en
Pages : 329
Book Description
Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration here beginning about fifteen years ago when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular beam method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not. The most relevant treatise then available to students was Mott and Massey's classic The Theory of Atomic Collisions, * but, as the title implies, it dealt only sparingly with the special features that arise when at least one of the collision partners is a molecule.
Publisher: Springer Science & Business Media
ISBN: 1461588677
Category : Science
Languages : en
Pages : 329
Book Description
Activity in any theoretical area is usually stimulated by new experimental techniques and the resulting opportunity of measuring phenomena that were previously inaccessible. Such has been the case in the area under consideration here beginning about fifteen years ago when the possibility of studying chemical reactions in crossed molecular beams captured the imagination of physical chemists, for one could imagine investigating chemical kinetics at the same level of molecular detail that had previously been possible only in spectroscopic investigations of molecular stucture. This created an interest among chemists in scattering theory, the molecular level description of a bimolecular collision process. Many other new and also powerful experimental techniques have evolved to supplement the molecular beam method, and the resulting wealth of new information about chemical dynamics has generated the present intense activity in molecular collision theory. During the early years when chemists were first becoming acquainted with scattering theory, it was mainly a matter of reading the physics literature because scattering experiments have long been the staple of that field. It was natural to apply the approximations and models that had been developed for nuclear and elementary particle physics, and although some of them were useful in describing molecular collision phenomena, many were not. The most relevant treatise then available to students was Mott and Massey's classic The Theory of Atomic Collisions, * but, as the title implies, it dealt only sparingly with the special features that arise when at least one of the collision partners is a molecule.
Quantum Electronics
Author:
Publisher: Academic Press
ISBN: 0080859976
Category : Science
Languages : en
Pages : 369
Book Description
Quantum Electronics
Publisher: Academic Press
ISBN: 0080859976
Category : Science
Languages : en
Pages : 369
Book Description
Quantum Electronics
Electron Transfer
Author: Joshua Jortner
Publisher: John Wiley & Sons
ISBN: 0470142189
Category : Science
Languages : en
Pages : 759
Book Description
an integrated approach to electron transfer phenomena This two-part stand-alone volume in the prestigious Advances in Chemical Physics series provides the most comprehensive overview of electron transfer science today. It draws on cutting-edge research from diverse areas of chemistry, physics, and biology-covering the most recent developments in the field, and pointing to important future trends. This initial volume includes: * A historical perspective spanning five decades * A review of concepts, problems, and ideas in current research * Electron transfer in isolated molecules and in clusters * General theory, including useful algorithms * Spectra and electron transfer kinetics in bridged compounds The second volume covers solvent control, ultrafast electron transfer and coherence effects, molecular electronics, electron transfer and chemistry, and biomolecules. Electron transfer science has seen tremendous progress in recent years. Technological innovations, most notably the advent of femtosecond lasers, now permit the real-time investigation of intramolecular and intermolecular electron transfer processes on a time scale of nuclear motion. New scientific information abounds, illuminating the processes of energy acquisition, storage, and disposal in large molecules, clusters, condensed phase, and biophysical systems. Electron Transfer: From Isolated Molecules to Biomolecules is the first book devoted to the exciting work being done in nonradiative electron transfer dynamics today. This two-part edited volume emphasizes the interdisciplinary nature of the field, bringing together the contributions of pioneers in chemistry, physics, and biology. Both theoretical and experimental topics are featured. The authors describe modern approaches to the exploration of different systems, including supersonic beam techniques, femtosecond laser spectroscopy, chemical syntheses, and methods in genetic and chemical engineering. They examine applications in such areas as supersonic jets, solvents, electrodes, semi- conductors, respiratory and enzymatic protein systems, photosynthesis, and more. They also relate electron transfer and radiationless transitions theory to pertinent physical phenomena, and provide a conceptual framework for the different processes. Complete with over two hundred illustrations, Part One reviews developments in the field since its inception fifty years ago, and discusses electron transfer phenomena in both isolated molecules and in clusters. It outlines the general theory, exploring areas of the control of kinetics, structure-function relationships, fluctuations, coherence, and coupling to solvents with complex spectral density in different types of electron transfer processes. Timely, comprehensive, and authoritative, Electron Transfer: From Isolated Molecules to Biomolecules is an essential resource for physical chemists, molecular physicists, and researchers working in nonradiative dynamics today.
Publisher: John Wiley & Sons
ISBN: 0470142189
Category : Science
Languages : en
Pages : 759
Book Description
an integrated approach to electron transfer phenomena This two-part stand-alone volume in the prestigious Advances in Chemical Physics series provides the most comprehensive overview of electron transfer science today. It draws on cutting-edge research from diverse areas of chemistry, physics, and biology-covering the most recent developments in the field, and pointing to important future trends. This initial volume includes: * A historical perspective spanning five decades * A review of concepts, problems, and ideas in current research * Electron transfer in isolated molecules and in clusters * General theory, including useful algorithms * Spectra and electron transfer kinetics in bridged compounds The second volume covers solvent control, ultrafast electron transfer and coherence effects, molecular electronics, electron transfer and chemistry, and biomolecules. Electron transfer science has seen tremendous progress in recent years. Technological innovations, most notably the advent of femtosecond lasers, now permit the real-time investigation of intramolecular and intermolecular electron transfer processes on a time scale of nuclear motion. New scientific information abounds, illuminating the processes of energy acquisition, storage, and disposal in large molecules, clusters, condensed phase, and biophysical systems. Electron Transfer: From Isolated Molecules to Biomolecules is the first book devoted to the exciting work being done in nonradiative electron transfer dynamics today. This two-part edited volume emphasizes the interdisciplinary nature of the field, bringing together the contributions of pioneers in chemistry, physics, and biology. Both theoretical and experimental topics are featured. The authors describe modern approaches to the exploration of different systems, including supersonic beam techniques, femtosecond laser spectroscopy, chemical syntheses, and methods in genetic and chemical engineering. They examine applications in such areas as supersonic jets, solvents, electrodes, semi- conductors, respiratory and enzymatic protein systems, photosynthesis, and more. They also relate electron transfer and radiationless transitions theory to pertinent physical phenomena, and provide a conceptual framework for the different processes. Complete with over two hundred illustrations, Part One reviews developments in the field since its inception fifty years ago, and discusses electron transfer phenomena in both isolated molecules and in clusters. It outlines the general theory, exploring areas of the control of kinetics, structure-function relationships, fluctuations, coherence, and coupling to solvents with complex spectral density in different types of electron transfer processes. Timely, comprehensive, and authoritative, Electron Transfer: From Isolated Molecules to Biomolecules is an essential resource for physical chemists, molecular physicists, and researchers working in nonradiative dynamics today.
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 574
Book Description
Nuclear Science Abstracts
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 972
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 972
Book Description
Organic Solid-State Chemistry—2
Author: M. D. Cohen
Publisher: Elsevier
ISBN: 1483284697
Category : Science
Languages : en
Pages : 231
Book Description
Organic Solid-State Chemistry–2 presents the solid state reactions in molecular crystals. This book discusses the correlations of the chemical structures of products from organic solid state reactions with the molecular packing in the reactant crystal structures. Organized into 10 chapters, this book begins with an overview of the molecular behavior after the chemical transition state. This text then examines the electron paramagnetic resonance methods, which offer many features in connection with the study of chemical reactions in which a paramagnetic species is a product or a reactant. Other chapters consider the interpretation of radiationless transitions, thermal reactions, and photochemical decompositions and rearrangements. The final chapter deals with the experimental results concerning electron and hole production in anthracene crystals, with emphasis on the relevance of these studies to the fundamental question of the nature of the excess electron states in these low mobility crystals. This book is a valuable resource for solid state chemists, photochemists, spectroscopists, scientists, and research workers.
Publisher: Elsevier
ISBN: 1483284697
Category : Science
Languages : en
Pages : 231
Book Description
Organic Solid-State Chemistry–2 presents the solid state reactions in molecular crystals. This book discusses the correlations of the chemical structures of products from organic solid state reactions with the molecular packing in the reactant crystal structures. Organized into 10 chapters, this book begins with an overview of the molecular behavior after the chemical transition state. This text then examines the electron paramagnetic resonance methods, which offer many features in connection with the study of chemical reactions in which a paramagnetic species is a product or a reactant. Other chapters consider the interpretation of radiationless transitions, thermal reactions, and photochemical decompositions and rearrangements. The final chapter deals with the experimental results concerning electron and hole production in anthracene crystals, with emphasis on the relevance of these studies to the fundamental question of the nature of the excess electron states in these low mobility crystals. This book is a valuable resource for solid state chemists, photochemists, spectroscopists, scientists, and research workers.
Nuclear Science Abstracts
Photochemistry
Author: D Bryce-Smith
Publisher: Royal Society of Chemistry
ISBN: 1847554555
Category : Science
Languages : en
Pages : 838
Book Description
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Publisher: Royal Society of Chemistry
ISBN: 1847554555
Category : Science
Languages : en
Pages : 838
Book Description
The breadth of scientific and technological interests in the general topic of photochemistry is truly enormous and includes, for example, such diverse areas as microelectronics, atmospheric chemistry, organic synthesis, non-conventional photoimaging, photosynthesis, solar energy conversion, polymer technologies, and spectroscopy. This Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes that have relevance to the above wide-ranging academic and commercial disciplines, and interests in chemistry, physics, biology and technology. In order to provide easy access to this vast and varied literature, each volume of Photochemistry comprises sections concerned with photophysical processes in condensed phases, organic aspects which are sub-divided by chromophore type, polymer photochemistry, and photochemical aspects of solar energy conversion. Volume 34 covers literature published from July 2001 to June 2002. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.