Author: Shui Feng
Publisher: Springer Science & Business Media
ISBN: 3642111947
Category : Mathematics
Languages : en
Pages : 228
Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.
The Poisson-Dirichlet Distribution and Related Topics
Author: Shui Feng
Publisher: Springer Science & Business Media
ISBN: 3642111947
Category : Mathematics
Languages : en
Pages : 228
Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.
Publisher: Springer Science & Business Media
ISBN: 3642111947
Category : Mathematics
Languages : en
Pages : 228
Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.
The Poisson-Dirichlet Distribution and Related Topics
Author: Shui Feng
Publisher: Springer
ISBN: 9783642263798
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.
Publisher: Springer
ISBN: 9783642263798
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presenting a comprehensive study of the Poisson-Dirichlet distribution, this volume emphasizes recent progress in evolutionary dynamics and asymptotic behaviors. The self-contained text presents methods and techniques that appeal to researchers in a wide variety of subjects.
Nonparametric Statistical Methods And Related Topics: A Festschrift In Honor Of Professor P K Bhattacharya On The Occasion Of His 80th Birthday
Author: Francisco J Samaniego
Publisher: World Scientific
ISBN: 9814458171
Category : Mathematics
Languages : en
Pages : 479
Book Description
This volume consists of 22 research papers by leading researchers in Probability and Statistics. Many of the papers are focused on themes that Professor Bhattacharya has published on research. Topics of special interest include nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory.This volume presents state-of-the-art research in statistical theory, with an emphasis on nonparametric inference, linear model theory, time series analysis and asymptotic theory. It will serve as a valuable reference to the statistics research community as well as to practitioners who utilize methodology in these areas of emphasis.
Publisher: World Scientific
ISBN: 9814458171
Category : Mathematics
Languages : en
Pages : 479
Book Description
This volume consists of 22 research papers by leading researchers in Probability and Statistics. Many of the papers are focused on themes that Professor Bhattacharya has published on research. Topics of special interest include nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory.This volume presents state-of-the-art research in statistical theory, with an emphasis on nonparametric inference, linear model theory, time series analysis and asymptotic theory. It will serve as a valuable reference to the statistics research community as well as to practitioners who utilize methodology in these areas of emphasis.
Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics
Author: Shuhei Mano
Publisher: Springer
ISBN: 4431558888
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences.
Publisher: Springer
ISBN: 4431558888
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences.
Fundamentals of Nonparametric Bayesian Inference
Author: Subhashis Ghosal
Publisher: Cambridge University Press
ISBN: 1108210120
Category : Mathematics
Languages : en
Pages : 671
Book Description
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
Publisher: Cambridge University Press
ISBN: 1108210120
Category : Mathematics
Languages : en
Pages : 671
Book Description
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
New Trends in Stochastic Analysis and Related Topics
Author: Huaizhong Zhao
Publisher: World Scientific
ISBN: 9814360910
Category : Mathematics
Languages : en
Pages : 458
Book Description
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Publisher: World Scientific
ISBN: 9814360910
Category : Mathematics
Languages : en
Pages : 458
Book Description
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Statistical Inference and Related Topics
Author: Madan Lal Puri
Publisher: Academic Press
ISBN: 1483257606
Category : Mathematics
Languages : en
Pages : 365
Book Description
Statistical Inference and Related Topics, Volume 2 presents the proceedings of the Summer Research Institute on Statistical Inference for Stochastic Processes, held in Bloomingdale, Indiana on July 31 to August 9, 1975. This book focuses on the theory of statistical inference for stochastic processes. Organized into 15 chapters, this volume begins with an overview of the case of continuous distributions with one real parameter. This text then reviews some results for multidimensional empirical processes and Brownian sheets when they are indexed by families of sets. Other chapters consider a class of cubic spline estimators of probability density functions over a finite interval. This book discusses as well the method to construct nonelimination type sequential procedures to select a subset containing all the superior populations. The final chapter deals with Markov sequences, which are among the most interesting available for study with a rich theory and varied applications. This book is a valuable resource for graduate students and research workers.
Publisher: Academic Press
ISBN: 1483257606
Category : Mathematics
Languages : en
Pages : 365
Book Description
Statistical Inference and Related Topics, Volume 2 presents the proceedings of the Summer Research Institute on Statistical Inference for Stochastic Processes, held in Bloomingdale, Indiana on July 31 to August 9, 1975. This book focuses on the theory of statistical inference for stochastic processes. Organized into 15 chapters, this volume begins with an overview of the case of continuous distributions with one real parameter. This text then reviews some results for multidimensional empirical processes and Brownian sheets when they are indexed by families of sets. Other chapters consider a class of cubic spline estimators of probability density functions over a finite interval. This book discusses as well the method to construct nonelimination type sequential procedures to select a subset containing all the superior populations. The final chapter deals with Markov sequences, which are among the most interesting available for study with a rich theory and varied applications. This book is a valuable resource for graduate students and research workers.
Probability and Mathematical Genetics
Author: N. H. Bingham
Publisher: Cambridge University Press
ISBN: 1139487922
Category : Mathematics
Languages : en
Pages : 547
Book Description
No leading university department of mathematics or statistics, or library, can afford to be without this unique text. Leading authorities give a unique insight into a wide range of currently topical problems, from the mathematics of road networks to the genomics of cancer.
Publisher: Cambridge University Press
ISBN: 1139487922
Category : Mathematics
Languages : en
Pages : 547
Book Description
No leading university department of mathematics or statistics, or library, can afford to be without this unique text. Leading authorities give a unique insight into a wide range of currently topical problems, from the mathematics of road networks to the genomics of cancer.
Pioneering Works on Distribution Theory
Author: Nobuaki Hoshino
Publisher: Springer Nature
ISBN: 9811596638
Category : Mathematics
Languages : en
Pages : 125
Book Description
This book highlights the forefront of research on statistical distribution theory, with a focus on unconventional random quantities, and on phenomena such as random partitioning. The respective papers reflect the continuing appeal of distribution theory and the lively interest in this classic field, which owes much of its expansion since the 1960s to Professor Masaaki Sibuya, to whom this book is dedicated. The topics addressed include a test procedure for discriminating the (multivariate) Ewens distribution from the Pitman Sampling Formula, approximation to the length of the Ewens distribution by discrete distributions and the normal distribution, and the distribution of the number of levels in [s]-specified random permutations. Also included are distributions associated with orthogonal polynomials with a symmetric matrix argument and the characterization of the Jeffreys prior.
Publisher: Springer Nature
ISBN: 9811596638
Category : Mathematics
Languages : en
Pages : 125
Book Description
This book highlights the forefront of research on statistical distribution theory, with a focus on unconventional random quantities, and on phenomena such as random partitioning. The respective papers reflect the continuing appeal of distribution theory and the lively interest in this classic field, which owes much of its expansion since the 1960s to Professor Masaaki Sibuya, to whom this book is dedicated. The topics addressed include a test procedure for discriminating the (multivariate) Ewens distribution from the Pitman Sampling Formula, approximation to the length of the Ewens distribution by discrete distributions and the normal distribution, and the distribution of the number of levels in [s]-specified random permutations. Also included are distributions associated with orthogonal polynomials with a symmetric matrix argument and the characterization of the Jeffreys prior.
Entropy and the Quantum II
Author: Robert Sims
Publisher: American Mathematical Soc.
ISBN: 0821868985
Category : Mathematics
Languages : en
Pages : 234
Book Description
The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.
Publisher: American Mathematical Soc.
ISBN: 0821868985
Category : Mathematics
Languages : en
Pages : 234
Book Description
The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.