The Intersection of History and Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Intersection of History and Mathematics PDF full book. Access full book title The Intersection of History and Mathematics by Sasaki Chikara. Download full books in PDF and EPUB format.

The Intersection of History and Mathematics

The Intersection of History and Mathematics PDF Author: Sasaki Chikara
Publisher: Birkhäuser
ISBN: 3034875215
Category : Mathematics
Languages : en
Pages : 272

Book Description


The Intersection of History and Mathematics

The Intersection of History and Mathematics PDF Author: Sasaki Chikara
Publisher: Birkhäuser
ISBN: 3034875215
Category : Mathematics
Languages : en
Pages : 272

Book Description


Looking at History Through Mathematics

Looking at History Through Mathematics PDF Author: Nicolas Rashevsky
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 232

Book Description


Intersection Theory

Intersection Theory PDF Author: W. Fulton
Publisher: Springer Science & Business Media
ISBN: 3662024217
Category : Mathematics
Languages : en
Pages : 483

Book Description
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.

On the Brink of Paradox

On the Brink of Paradox PDF Author: Agustin Rayo
Publisher: MIT Press
ISBN: 0262039419
Category : Mathematics
Languages : en
Pages : 321

Book Description
An introduction to awe-inspiring ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, and computability theory. This book introduces the reader to awe-inspiring issues at the intersection of philosophy and mathematics. It explores ideas at the brink of paradox: infinities of different sizes, time travel, probability and measure theory, computability theory, the Grandfather Paradox, Newcomb's Problem, the Principle of Countable Additivity. The goal is to present some exceptionally beautiful ideas in enough detail to enable readers to understand the ideas themselves (rather than watered-down approximations), but without supplying so much detail that they abandon the effort. The philosophical content requires a mind attuned to subtlety; the most demanding of the mathematical ideas require familiarity with college-level mathematics or mathematical proof. The book covers Cantor's revolutionary thinking about infinity, which leads to the result that some infinities are bigger than others; time travel and free will, decision theory, probability, and the Banach-Tarski Theorem, which states that it is possible to decompose a ball into a finite number of pieces and reassemble the pieces so as to get two balls that are each the same size as the original. Its investigation of computability theory leads to a proof of Gödel's Incompleteness Theorem, which yields the amazing result that arithmetic is so complex that no computer could be programmed to output every arithmetical truth and no falsehood. Each chapter is followed by an appendix with answers to exercises. A list of recommended reading points readers to more advanced discussions. The book is based on a popular course (and MOOC) taught by the author at MIT.

Mathematics and Art

Mathematics and Art PDF Author: Lynn Gamwell
Publisher: Princeton University Press
ISBN: 0691165289
Category : Art
Languages : en
Pages : 576

Book Description
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.

The Geometry of an Art

The Geometry of an Art PDF Author: Kirsti Andersen
Publisher: Springer Science & Business Media
ISBN: 0387489460
Category : Mathematics
Languages : en
Pages : 837

Book Description
This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.

A Century of Mathematics in America

A Century of Mathematics in America PDF Author: Peter L. Duren
Publisher: Springer Science & Business
ISBN: 9780821801369
Category : Mathematics
Languages : en
Pages : 692

Book Description
Part of the A Century of Mathematics in America collection, this book contains articles that describe the mathematics and the mathematical personalities in some of the nations' prominent departments: Johns Hopkins, Clark, Columbia, MIT, Michigan, Texas, and the Institute for Advanced Study.

Mathematicians and Their Gods

Mathematicians and Their Gods PDF Author: Snezana Lawrence
Publisher: Oxford University Press, USA
ISBN: 0198703058
Category : Mathematics
Languages : en
Pages : 305

Book Description
This is a book on the relationship between mathematics and religious beliefs. This book shows that, throughout scientific history, mathematics has been used to make sense of the 'big' questions of life, and that religious beliefs sometimes drove mathematicians to do mathematics to help them make sense of the world

Arguing with Numbers

Arguing with Numbers PDF Author: James Wynn
Publisher: Penn State Press
ISBN: 0271089237
Category : Language Arts & Disciplines
Languages : en
Pages : 303

Book Description
As discrete fields of inquiry, rhetoric and mathematics have long been considered antithetical to each other. That is, if mathematics explains or describes the phenomena it studies with certainty, persuasion is not needed. This volume calls into question the view that mathematics is free of rhetoric. Through nine studies of the intersections between these two disciplines, Arguing with Numbers shows that mathematics is in fact deeply rhetorical. Using rhetoric as a lens to analyze mathematically based arguments in public policy, political and economic theory, and even literature, the essays in this volume reveal how mathematics influences the values and beliefs with which we assess the world and make decisions and how our worldviews influence the kinds of mathematical instruments we construct and accept. In addition, contributors examine how concepts of rhetoric—such as analogy and visuality—have been employed in mathematical and scientific reasoning, including in the theorems of mathematical physicists and the geometrical diagramming of natural scientists. Challenging academic orthodoxy, these scholars reject a math-equals-truth reduction in favor of a more constructivist theory of mathematics as dynamic, evolving, and powerfully persuasive. By bringing these disparate lines of inquiry into conversation with one another, Arguing with Numbers provides inspiration to students, established scholars, and anyone inside or outside rhetorical studies who might be interested in exploring the intersections between the two disciplines. In addition to the editors, the contributors to this volume are Catherine Chaput, Crystal Broch Colombini, Nathan Crick, Michael Dreher, Jeanne Fahnestock, Andrew C. Jones, Joseph Little, and Edward Schiappa.

Topics in Intersection Graph Theory

Topics in Intersection Graph Theory PDF Author: Terry A. McKee
Publisher: SIAM
ISBN: 9780898719802
Category : Mathematics
Languages : en
Pages : 213

Book Description
Finally there is a book that presents real applications of graph theory in a unified format. This book is the only source for an extended, concentrated focus on the theory and techniques common to various types of intersection graphs. It is a concise treatment of the aspects of intersection graphs that interconnect many standard concepts and form the foundation of a surprising array of applications to biology, computing, psychology, matrices, and statistics.