The Interaction of Sound and Shock Waves with Flexible Porous Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Interaction of Sound and Shock Waves with Flexible Porous Materials PDF full book. Access full book title The Interaction of Sound and Shock Waves with Flexible Porous Materials by James Fuller Abbott. Download full books in PDF and EPUB format.

The Interaction of Sound and Shock Waves with Flexible Porous Materials

The Interaction of Sound and Shock Waves with Flexible Porous Materials PDF Author: James Fuller Abbott
Publisher:
ISBN:
Category :
Languages : en
Pages : 278

Book Description


The Interaction of Sound and Shock Waves with Flexible Porous Materials

The Interaction of Sound and Shock Waves with Flexible Porous Materials PDF Author: James Fuller Abbott
Publisher:
ISBN:
Category :
Languages : en
Pages : 278

Book Description


The Interaction of Shock Waves with Porous Materials

The Interaction of Shock Waves with Porous Materials PDF Author: Charles Frederick McMillan
Publisher:
ISBN:
Category :
Languages : en
Pages : 284

Book Description


Shock Phenomena in Granular and Porous Materials

Shock Phenomena in Granular and Porous Materials PDF Author: Tracy J. Vogler
Publisher: Springer Nature
ISBN: 3030230023
Category : Science
Languages : en
Pages : 294

Book Description
Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.

Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids PDF Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745696
Category : Science
Languages : en
Pages : 439

Book Description
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Molecular Dynamics of Shock Wave Interaction with Nanoscale Structured Materials

Molecular Dynamics of Shock Wave Interaction with Nanoscale Structured Materials PDF Author: Ahmad K.. Al-Qananwah
Publisher:
ISBN:
Category :
Languages : en
Pages : 226

Book Description
Typical theoretical treatments of shock wave interactions are based on a continuum approach, which cannot resolve the spatial variations in solids with nano-scale porous structure. Nano-structured materials have the potential to attenuate the strength of traveling shock waves because of their high surface-to-volume ratio. To investigate such interactions we have developed a molecular dynamics simulation model, based on Short Range Attractive interactions. A piston, modeled as a uni-directional repulsive force field translating at a prescribed velocity, impinges on a region of gas which is compressed to form a shock, which in turn is driven against an atomistic solid wall. Periodic boundary conditions are used in the directions orthogonal to the piston motion, and we have considered solids based on either embedded atom potentials (target structure) or tethered potential (rigid piston, holding wall). Velocity, temperature and stress fields are computed locally in both gas and solid regions, and displacements within the solid are interpreted in terms of its elastic constants. In this work we present results of the elastic behavior of solid structures subjected to shock wave impact and analysis of energy transport and absorption in porous materials. The results indicated that the presence of nano-porous material layers in front of a target wall reduced the stress magnitude detected inside and the energy deposited there by about 30 percent while, at the same time, its loading rate was decreased substantially.

Shock Wave Compression of Condensed Matter

Shock Wave Compression of Condensed Matter PDF Author: Jerry W Forbes
Publisher: Springer Science & Business Media
ISBN: 3642325351
Category : Science
Languages : en
Pages : 388

Book Description
This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure, shock velocity, mass velocity, compression and internal energy of steady 1-D shock waves is then presented. In the second part of the book, more advanced topics are progressively introduced: thermodynamic surfaces are used to describe equilibrium flow behavior, first-order Maxwell solid models are used to describe time-dependent flow behavior, descriptions of detonation shock waves in ideal and non-ideal explosives are provided, and lastly, a select group of current issues in shock wave physics are discussed in the final chapter.

31st International Symposium on Shock Waves 1

31st International Symposium on Shock Waves 1 PDF Author: Akihiro Sasoh
Publisher: Springer
ISBN: 3319910205
Category : Technology & Engineering
Languages : en
Pages : 1188

Book Description
This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.

Notes on Acoustics

Notes on Acoustics PDF Author: K. Uno Ingard
Publisher: Jones & Bartlett Publishers
ISBN: 1934015083
Category : Science
Languages : en
Pages : 455

Book Description
Introduction -- Oscillations -- Sound waves -- Sound reflection, absorption, and transmission -- The wave equation -- Room and duct acoustics -- Flow-induced sound and instabilities -- Sound generation by fans -- Atmospheric acoustics -- Mean-flow effects and nonlinear acoustics -- Examples.

Propagation of Sound in Porous Media

Propagation of Sound in Porous Media PDF Author: J.F. Allard
Publisher: Springer Science & Business Media
ISBN: 9401118663
Category : Technology & Engineering
Languages : en
Pages : 296

Book Description
This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Noise Reduction Analysis

Noise Reduction Analysis PDF Author: K. Uno Ingard
Publisher: Jones & Bartlett Learning
ISBN: 1934015318
Category : Science
Languages : en
Pages : 473

Book Description
Written By A Noted Authority In The Subject Area, This Book Is A Comprehensive Study Of The Theory And Practical Application Of Noise Reduction To Numerous Fields. It May Be Used As A Reference By Scientists And Engineers Or In A Senior-Undergraduate Or Graduate-Level Course. The First Six Chapters Deal With The Basic Mechanisms Of Sound Absorption By Which Acoustic Energy Is Converted Into Heat In Viscous And Thermal Boundaries In A Sound Field. The Second Part Covers Duct Attenuators With A Discussion Of How Their Performance Is Described And Measured. The Main Part Of Each Chapter Is Planned To Be Descriptive, And Contains Numerical Results That Should Be Of Direct Interest For Design Work. Mathematical Analysis Is Placed At The End Of The Chapters.