Author: Leonid Polterovich
Publisher: Birkhäuser
ISBN: 3034882998
Category : Mathematics
Languages : en
Pages : 138
Book Description
The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.
The Geometry of the Group of Symplectic Diffeomorphism
Author: Leonid Polterovich
Publisher: Birkhäuser
ISBN: 3034882998
Category : Mathematics
Languages : en
Pages : 138
Book Description
The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.
Publisher: Birkhäuser
ISBN: 3034882998
Category : Mathematics
Languages : en
Pages : 138
Book Description
The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
The Structure of Classical Diffeomorphism Groups
Author: Augustin Banyaga
Publisher: Springer Science & Business Media
ISBN: 1475768001
Category : Mathematics
Languages : en
Pages : 211
Book Description
In the 60's, the work of Anderson, Chernavski, Kirby and Edwards showed that the group of homeomorphisms of a smooth manifold which are isotopic to the identity is a simple group. This led Smale to conjecture that the group Diff'" (M)o of cr diffeomorphisms, r ~ 1, of a smooth manifold M, with compact supports, and isotopic to the identity through compactly supported isotopies, is a simple group as well. In this monograph, we give a fairly detailed proof that DifF(M)o is a simple group. This theorem was proved by Herman in the case M is the torus rn in 1971, as a consequence of the Nash-Moser-Sergeraert implicit function theorem. Thurston showed in 1974 how Herman's result on rn implies the general theorem for any smooth manifold M. The key idea was to vision an isotopy in Diff'"(M) as a foliation on M x [0, 1]. In fact he discovered a deep connection between the local homology of the group of diffeomorphisms and the homology of the Haefliger classifying space for foliations. Thurston's paper [180] contains just a brief sketch of the proof. The details have been worked out by Mather [120], [124], [125], and the author [12]. This circle of ideas that we call the "Thurston tricks" is discussed in chapter 2. It explains how in certain groups of diffeomorphisms, perfectness leads to simplicity. In connection with these ideas, we discuss Epstein's theory [52], which we apply to contact diffeomorphisms in chapter 6.
Publisher: Springer Science & Business Media
ISBN: 1475768001
Category : Mathematics
Languages : en
Pages : 211
Book Description
In the 60's, the work of Anderson, Chernavski, Kirby and Edwards showed that the group of homeomorphisms of a smooth manifold which are isotopic to the identity is a simple group. This led Smale to conjecture that the group Diff'" (M)o of cr diffeomorphisms, r ~ 1, of a smooth manifold M, with compact supports, and isotopic to the identity through compactly supported isotopies, is a simple group as well. In this monograph, we give a fairly detailed proof that DifF(M)o is a simple group. This theorem was proved by Herman in the case M is the torus rn in 1971, as a consequence of the Nash-Moser-Sergeraert implicit function theorem. Thurston showed in 1974 how Herman's result on rn implies the general theorem for any smooth manifold M. The key idea was to vision an isotopy in Diff'"(M) as a foliation on M x [0, 1]. In fact he discovered a deep connection between the local homology of the group of diffeomorphisms and the homology of the Haefliger classifying space for foliations. Thurston's paper [180] contains just a brief sketch of the proof. The details have been worked out by Mather [120], [124], [125], and the author [12]. This circle of ideas that we call the "Thurston tricks" is discussed in chapter 2. It explains how in certain groups of diffeomorphisms, perfectness leads to simplicity. In connection with these ideas, we discuss Epstein's theory [52], which we apply to contact diffeomorphisms in chapter 6.
Symplectic Geometry and Topology
Author: Yakov Eliashberg
Publisher: American Mathematical Soc.
ISBN: 9780821886892
Category : Mathematics
Languages : en
Pages : 452
Book Description
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 9780821886892
Category : Mathematics
Languages : en
Pages : 452
Book Description
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
The Geometry of the Group of Symplectic Diffeomorphisms
Author: Leonid Polterovich
Publisher: Springer
ISBN:
Category : Diffeomorphisms
Languages : en
Pages : 154
Book Description
The group of symplectic diffeomorphisms of a symplectic manifold plays a fundamental role both in geometry and classical mechanics. What is the minimal amount of energy required in order to generate a given mechanical motion? This variational problem admits an interpretation in terms of a remarkable geometry on the group discovered by Hofer in 1990. Hofer's geometry serves as a source of interesting problems and gives rise to new methods and notions which extend significantly our vision of the symplectic world. In the past decade this new geometry has been intensively studied in the framework of symplectic topology with the use of modern techniques such as Gromov's theory of pseudo-holomorphic curves, Floer homology and Guillemin-Sternberg-Lerman theory of symplectic connections. Furthermore, it opens up the intriguing prospect of using an alternative geometric intuition in dynamics. The book provides an essentially self-contained introduction into these developments and includes recent results on diameter, geodesics and growth of one-parameter subgroups in Hofer's geometry, as well as applications to dynamics and ergodic theory. It is addressed to researchers and students from the graduate level onwards.
Publisher: Springer
ISBN:
Category : Diffeomorphisms
Languages : en
Pages : 154
Book Description
The group of symplectic diffeomorphisms of a symplectic manifold plays a fundamental role both in geometry and classical mechanics. What is the minimal amount of energy required in order to generate a given mechanical motion? This variational problem admits an interpretation in terms of a remarkable geometry on the group discovered by Hofer in 1990. Hofer's geometry serves as a source of interesting problems and gives rise to new methods and notions which extend significantly our vision of the symplectic world. In the past decade this new geometry has been intensively studied in the framework of symplectic topology with the use of modern techniques such as Gromov's theory of pseudo-holomorphic curves, Floer homology and Guillemin-Sternberg-Lerman theory of symplectic connections. Furthermore, it opens up the intriguing prospect of using an alternative geometric intuition in dynamics. The book provides an essentially self-contained introduction into these developments and includes recent results on diameter, geodesics and growth of one-parameter subgroups in Hofer's geometry, as well as applications to dynamics and ergodic theory. It is addressed to researchers and students from the graduate level onwards.
An Introduction to Symplectic Geometry
Author: Rolf Berndt
Publisher: American Mathematical Soc.
ISBN: 9780821820568
Category : Mathematics
Languages : en
Pages : 226
Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821820568
Category : Mathematics
Languages : en
Pages : 226
Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Symplectic Invariants and Hamiltonian Dynamics
Author: Helmut Hofer
Publisher: Birkhäuser
ISBN: 3034885407
Category : Mathematics
Languages : en
Pages : 356
Book Description
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Publisher: Birkhäuser
ISBN: 3034885407
Category : Mathematics
Languages : en
Pages : 356
Book Description
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Function Theory on Symplectic Manifolds
Author: Leonid Polterovich
Publisher:
ISBN: 9781470419318
Category : Geometric function theory
Languages : en
Pages : 203
Book Description
Cover -- Title page -- Contents -- Preface -- Three wonders of symplectic geometry -- 0-rigidity of the Poisson bracket -- Quasi-morphisms -- Subadditive spectral invariants -- Symplectic quasi-states and quasi-measures -- Applications of partial symplectic quasi-states -- A Poisson bracket invariant of quadruples -- Symplectic approximation theory -- Geometry of covers and quantum noise -- Preliminaries from Morse theory -- An overview of Floer theory -- Constructing subadditive spectral invariants -- Bibliography -- Nomenclature -- Subject index -- Name index -- Back Cover
Publisher:
ISBN: 9781470419318
Category : Geometric function theory
Languages : en
Pages : 203
Book Description
Cover -- Title page -- Contents -- Preface -- Three wonders of symplectic geometry -- 0-rigidity of the Poisson bracket -- Quasi-morphisms -- Subadditive spectral invariants -- Symplectic quasi-states and quasi-measures -- Applications of partial symplectic quasi-states -- A Poisson bracket invariant of quadruples -- Symplectic approximation theory -- Geometry of covers and quantum noise -- Preliminaries from Morse theory -- An overview of Floer theory -- Constructing subadditive spectral invariants -- Bibliography -- Nomenclature -- Subject index -- Name index -- Back Cover
Lectures on the Geometry of Quantization
Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
The Breadth of Symplectic and Poisson Geometry
Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics