Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
The Oxford Handbook of Economic Forecasting
Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Dynamic Factor Models
Author: Jörg Breitung
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29
Book Description
Time Series in High Dimension: the General Dynamic Factor Model
Author: Marc Hallin
Publisher: World Scientific Publishing Company
ISBN: 9789813278004
Category : Business & Economics
Languages : en
Pages : 764
Book Description
Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.
Publisher: World Scientific Publishing Company
ISBN: 9789813278004
Category : Business & Economics
Languages : en
Pages : 764
Book Description
Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.
Modern Econometric Analysis
Author: Olaf Hübler
Publisher: Springer Science & Business Media
ISBN: 3540326936
Category : Business & Economics
Languages : en
Pages : 236
Book Description
In this book leading German econometricians in different fields present survey articles of the most important new methods in econometrics. The book gives an overview of the field and it shows progress made in recent years and remaining problems.
Publisher: Springer Science & Business Media
ISBN: 3540326936
Category : Business & Economics
Languages : en
Pages : 236
Book Description
In this book leading German econometricians in different fields present survey articles of the most important new methods in econometrics. The book gives an overview of the field and it shows progress made in recent years and remaining problems.
The Generalized Dynamic Factor Model
Aggregation and the Microfoundations of Dynamic Macroeconomics
Author: Mario Forni
Publisher: Oxford University Press
ISBN: 9780198288008
Category : Business & Economics
Languages : en
Pages : 264
Book Description
Through careful methodological analysis, this book argues that modern macroeconomics has completely overlooked the aggregate nature of the data. In Part I, the authors test and reject the homogeneity assumption using disaggregate data. In Part II, they demonstrate that apart from random flukes, cointegration unidirectional Granger causality and restrictions on parameters do not survive aggregation when heterogeneity is introduced. They conclude that the claim that modern macroeconomics has solid microfoundations is unwarranted. However, some important theory-based models that do not fit aggregate data well in their representative-agent version can be reconciled with aggregate data by introducing heterogeneity.
Publisher: Oxford University Press
ISBN: 9780198288008
Category : Business & Economics
Languages : en
Pages : 264
Book Description
Through careful methodological analysis, this book argues that modern macroeconomics has completely overlooked the aggregate nature of the data. In Part I, the authors test and reject the homogeneity assumption using disaggregate data. In Part II, they demonstrate that apart from random flukes, cointegration unidirectional Granger causality and restrictions on parameters do not survive aggregation when heterogeneity is introduced. They conclude that the claim that modern macroeconomics has solid microfoundations is unwarranted. However, some important theory-based models that do not fit aggregate data well in their representative-agent version can be reconciled with aggregate data by introducing heterogeneity.
Dynamic Factor Models
Author: Siem Jan Koopman
Publisher: Emerald Group Publishing
ISBN: 1785603523
Category : Business & Economics
Languages : en
Pages : 685
Book Description
This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.
Publisher: Emerald Group Publishing
ISBN: 1785603523
Category : Business & Economics
Languages : en
Pages : 685
Book Description
This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.
The Generalized Dynamic Factor Model
The Generalized Dynamic Factor Model
Author: Mario Forni
Publisher:
ISBN:
Category : Econometric models
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Econometric models
Languages : en
Pages : 48
Book Description
Dynamic Linear Models with R
Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.