The Elements of Joint Learning and Optimization in Operations Management PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Elements of Joint Learning and Optimization in Operations Management PDF full book. Access full book title The Elements of Joint Learning and Optimization in Operations Management by Xi Chen. Download full books in PDF and EPUB format.

The Elements of Joint Learning and Optimization in Operations Management

The Elements of Joint Learning and Optimization in Operations Management PDF Author: Xi Chen
Publisher: Springer Nature
ISBN: 3031019261
Category : Business & Economics
Languages : en
Pages : 444

Book Description
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.

The Elements of Joint Learning and Optimization in Operations Management

The Elements of Joint Learning and Optimization in Operations Management PDF Author: Xi Chen
Publisher: Springer Nature
ISBN: 3031019261
Category : Business & Economics
Languages : en
Pages : 444

Book Description
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.

Statistical Methods for Dynamic Treatment Regimes

Statistical Methods for Dynamic Treatment Regimes PDF Author: Bibhas Chakraborty
Publisher: Springer Science & Business Media
ISBN: 1461474280
Category : Medical
Languages : en
Pages : 220

Book Description
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.

Optimization in Operations Research

Optimization in Operations Research PDF Author: Ronald L. Rardin
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936

Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.

Aimms Optimization Modeling

Aimms Optimization Modeling PDF Author: Johannes Bisschop
Publisher: Lulu.com
ISBN: 1847539122
Category : Computers
Languages : en
Pages : 318

Book Description
The AIMMS Optimization Modeling book provides not only an introduction to modeling but also a suite of worked examples. It is aimed at users who are new to modeling and those who have limited modeling experience. Both the basic concepts of optimization modeling and more advanced modeling techniques are discussed. The Optimization Modeling book is AIMMS version independent.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Machine Learning, Optimization, and Data Science

Machine Learning, Optimization, and Data Science PDF Author: Giuseppe Nicosia
Publisher: Springer Nature
ISBN: 3030645800
Category : Computers
Languages : en
Pages : 701

Book Description
This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.

Operations Management in Context

Operations Management in Context PDF Author: Frank Rowbotham
Publisher: Routledge
ISBN: 1136375392
Category : Business & Economics
Languages : en
Pages : 444

Book Description
Operations Management in Context provides students with excellent grounding in the theory and practice of operations management and its role within organizations. Structured in a clear and logical manner, it gradually leads newcomers to this subject through each topic area, highlighting key issues, and using practical case study material and examples to contextualize learning. Each chapter is structured logically and concludes with summary material to aid revision. Exercises and self-assessment questions are included to reinforce learning and maintain variety, with answers included at the end of the text.

Fundamentals of Supply Chain Management

Fundamentals of Supply Chain Management PDF Author:
Publisher: Bookboon
ISBN: 8776817989
Category :
Languages : en
Pages : 112

Book Description


Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Author: Stephen Boyd
Publisher: Now Publishers Inc
ISBN: 160198460X
Category : Computers
Languages : en
Pages : 138

Book Description
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Optimization Methods in Finance

Optimization Methods in Finance PDF Author: Gerard Cornuejols
Publisher: Cambridge University Press
ISBN: 9780521861700
Category : Mathematics
Languages : en
Pages : 358

Book Description
Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.