Author: Jun Wu
Publisher: CRC Press
ISBN: 9781138049673
Category : Computer science
Languages : en
Pages : 268
Book Description
"A series of essays introducing the applications of machine learning and statistics in natural language processing, speech recognition and web search for non-technical readers"--
The Beauty of Mathematics in Computer Science
Author: Jun Wu
Publisher: CRC Press
ISBN: 9781138049673
Category : Computer science
Languages : en
Pages : 268
Book Description
"A series of essays introducing the applications of machine learning and statistics in natural language processing, speech recognition and web search for non-technical readers"--
Publisher: CRC Press
ISBN: 9781138049673
Category : Computer science
Languages : en
Pages : 268
Book Description
"A series of essays introducing the applications of machine learning and statistics in natural language processing, speech recognition and web search for non-technical readers"--
The Beauty of Mathematics in Computer Science
Author: Jun Wu
Publisher: CRC Press
ISBN: 1351689118
Category : Business & Economics
Languages : en
Pages : 266
Book Description
The Beauty of Mathematics in Computer Science explains the mathematical fundamentals of information technology products and services we use every day, from Google Web Search to GPS Navigation, and from speech recognition to CDMA mobile services. The book was published in Chinese in 2011 and has sold more than 600,000 copies. Readers were surprised to find that many daily-used IT technologies were so tightly tied to mathematical principles. For example, the automatic classification of news articles uses the cosine law taught in high school. The book covers many topics related to computer applications and applied mathematics including: Natural language processing Speech recognition and machine translation Statistical language modeling Quantitive measurement of information Graph theory and web crawler Pagerank for web search Matrix operation and document classification Mathematical background of big data Neural networks and Google’s deep learning Jun Wu was a staff research scientist in Google who invented Google’s Chinese, Japanese, and Korean Web Search Algorithms and was responsible for many Google machine learning projects. He wrote official blogs introducing Google technologies behind its products in very simple languages for Chinese Internet users from 2006-2010. The blogs had more than 2 million followers. Wu received PhD in computer science from Johns Hopkins University and has been working on speech recognition and natural language processing for more than 20 years. He was one of the earliest engineers of Google, managed many products of the company, and was awarded 19 US patents during his 10-year tenure there. Wu became a full-time VC investor and co-founded Amino Capital in Palo Alto in 2014 and is the author of eight books.
Publisher: CRC Press
ISBN: 1351689118
Category : Business & Economics
Languages : en
Pages : 266
Book Description
The Beauty of Mathematics in Computer Science explains the mathematical fundamentals of information technology products and services we use every day, from Google Web Search to GPS Navigation, and from speech recognition to CDMA mobile services. The book was published in Chinese in 2011 and has sold more than 600,000 copies. Readers were surprised to find that many daily-used IT technologies were so tightly tied to mathematical principles. For example, the automatic classification of news articles uses the cosine law taught in high school. The book covers many topics related to computer applications and applied mathematics including: Natural language processing Speech recognition and machine translation Statistical language modeling Quantitive measurement of information Graph theory and web crawler Pagerank for web search Matrix operation and document classification Mathematical background of big data Neural networks and Google’s deep learning Jun Wu was a staff research scientist in Google who invented Google’s Chinese, Japanese, and Korean Web Search Algorithms and was responsible for many Google machine learning projects. He wrote official blogs introducing Google technologies behind its products in very simple languages for Chinese Internet users from 2006-2010. The blogs had more than 2 million followers. Wu received PhD in computer science from Johns Hopkins University and has been working on speech recognition and natural language processing for more than 20 years. He was one of the earliest engineers of Google, managed many products of the company, and was awarded 19 US patents during his 10-year tenure there. Wu became a full-time VC investor and co-founded Amino Capital in Palo Alto in 2014 and is the author of eight books.
Concrete Mathematics
Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Foundation Mathematics for Computer Science
Author: John Vince
Publisher: Springer
ISBN: 3319214373
Category : Computers
Languages : en
Pages : 341
Book Description
John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Publisher: Springer
ISBN: 3319214373
Category : Computers
Languages : en
Pages : 341
Book Description
John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Mathematics of Discrete Structures for Computer Science
Author: Gordon J. Pace
Publisher: Springer Science & Business Media
ISBN: 3642298397
Category : Computers
Languages : en
Pages : 302
Book Description
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
Publisher: Springer Science & Business Media
ISBN: 3642298397
Category : Computers
Languages : en
Pages : 302
Book Description
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
Discrete Mathematics with Computer Science Applications
Author: Romualdas Skvarcius
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 536
Book Description
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 536
Book Description
Mathematics for Computer Science
Author: Eric Lehman
Publisher:
ISBN: 9789888407064
Category : Business & Economics
Languages : en
Pages : 988
Book Description
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
Publisher:
ISBN: 9789888407064
Category : Business & Economics
Languages : en
Pages : 988
Book Description
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
The Beauty of Mathematics in Science
Author: Jin-Quan Chen
Publisher: World Scientific
ISBN: 9812795421
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book is a tribute to the life and work of J Q Chen. The contributions of Chen to nuclear and molecular physics are discussed vis-a-vis present developments in these fields. Among other subjects, the present status of microscopic theories of the interacting boson model in nuclear physics and the theory of symmetry adaptation of molecular vibrations in molecular physics are reviewed. The latter theory is particularly useful for large molecular species such as fullerenes, where icosahedral symmetry plays a fundamental role. Contents: A Conceptual Review of the New Approach to Group Representation Theory (F Wang, Nanjing University, China); The Interacting Boson Model (P Van Isacker, GANIL, France); Structure of Nuclei Near the First Order Spherical-Deformed Phase Transition in the Interacting Boson Model (N V Zamfir, G E, Fernandes & R F Casten, Yale University, USA); Dynamical Symmetry Approach to Collective Motions in Many-Body Systems (C-L Wu, National Center for Theoretical Sciences, Taiwan); Fermion Dynamical Symmetries and High Temperature Superconductors (M Guidry, University of Tennessee, USA); Quantum Mechanics on a Sphere (J N Ginocchio, Los Alamos National Laboratory, USA); The Method of Symmetrized Bosons (F Iachello, Yale University, Connecticut); The Perturbed Dirac-Coulomb Problem via SO(2,1) Algebra. A Dilemma! (K T Hecht, University of Michigan, USA); Continuous Groups and Molecular Electronic Structure (J Paldus & X-Z Li); and other papers. Readership: Researchers in nuclear, molecular and mathematical physics."
Publisher: World Scientific
ISBN: 9812795421
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book is a tribute to the life and work of J Q Chen. The contributions of Chen to nuclear and molecular physics are discussed vis-a-vis present developments in these fields. Among other subjects, the present status of microscopic theories of the interacting boson model in nuclear physics and the theory of symmetry adaptation of molecular vibrations in molecular physics are reviewed. The latter theory is particularly useful for large molecular species such as fullerenes, where icosahedral symmetry plays a fundamental role. Contents: A Conceptual Review of the New Approach to Group Representation Theory (F Wang, Nanjing University, China); The Interacting Boson Model (P Van Isacker, GANIL, France); Structure of Nuclei Near the First Order Spherical-Deformed Phase Transition in the Interacting Boson Model (N V Zamfir, G E, Fernandes & R F Casten, Yale University, USA); Dynamical Symmetry Approach to Collective Motions in Many-Body Systems (C-L Wu, National Center for Theoretical Sciences, Taiwan); Fermion Dynamical Symmetries and High Temperature Superconductors (M Guidry, University of Tennessee, USA); Quantum Mechanics on a Sphere (J N Ginocchio, Los Alamos National Laboratory, USA); The Method of Symmetrized Bosons (F Iachello, Yale University, Connecticut); The Perturbed Dirac-Coulomb Problem via SO(2,1) Algebra. A Dilemma! (K T Hecht, University of Michigan, USA); Continuous Groups and Molecular Electronic Structure (J Paldus & X-Z Li); and other papers. Readership: Researchers in nuclear, molecular and mathematical physics."
Logic for Mathematics and Computer Science
Author: Stanley Burris
Publisher: Upper Saddle River, N.J. : Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 456
Book Description
This text is intended for one semester courses in Logic, it can also be applied to a two semester course, in either Computer Science or Mathematics Departments. Unlike other texts on mathematical logic that are either too advanced, too sparse in examples or exercises, too traditional in coverage, or too philosophical in approach, this text provides an elementary "hands-on" presentation of important mathematical logic topics, new and old, that is readily accessible and relevant to all students of the mathematical sciences -- not just those in traditional pure mathematics.
Publisher: Upper Saddle River, N.J. : Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 456
Book Description
This text is intended for one semester courses in Logic, it can also be applied to a two semester course, in either Computer Science or Mathematics Departments. Unlike other texts on mathematical logic that are either too advanced, too sparse in examples or exercises, too traditional in coverage, or too philosophical in approach, this text provides an elementary "hands-on" presentation of important mathematical logic topics, new and old, that is readily accessible and relevant to all students of the mathematical sciences -- not just those in traditional pure mathematics.
Problems with a Point
Author: William I. Gasarch
Publisher:
ISBN: 9789813279735
Category : Computer science
Languages : en
Pages : 285
Book Description
"Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner."--
Publisher:
ISBN: 9789813279735
Category : Computer science
Languages : en
Pages : 285
Book Description
"Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner."--