Author: Yipeng Liu
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Tensor Computation for Data Analysis
Author: Yipeng Liu
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Publisher: Springer Nature
ISBN: 3030743861
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Tensors for Data Processing
Author: Yipeng Liu
Publisher: Academic Press
ISBN: 0323859658
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application
Publisher: Academic Press
ISBN: 0323859658
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application
High-Performance Tensor Computations in Scientific Computing and Data Science
Author: Edoardo Angelo Di Napoli
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Publisher: Frontiers Media SA
ISBN: 2832504256
Category : Science
Languages : en
Pages : 192
Book Description
Tensor Regression
Author: Jiani Liu
Publisher:
ISBN: 9781680838862
Category :
Languages : en
Pages :
Book Description
Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.
Publisher:
ISBN: 9781680838862
Category :
Languages : en
Pages :
Book Description
Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.
Tensor Spaces and Numerical Tensor Calculus
Author: Wolfgang Hackbusch
Publisher: Springer Nature
ISBN: 3030355543
Category : Mathematics
Languages : en
Pages : 622
Book Description
Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
Publisher: Springer Nature
ISBN: 3030355543
Category : Mathematics
Languages : en
Pages : 622
Book Description
Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
Tensor Methods in Statistics
Author: Peter McCullagh
Publisher: Courier Dover Publications
ISBN: 0486832694
Category : Mathematics
Languages : en
Pages : 308
Book Description
A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.
Publisher: Courier Dover Publications
ISBN: 0486832694
Category : Mathematics
Languages : en
Pages : 308
Book Description
A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.
Computational Statistics in Data Science
Author: Richard A. Levine
Publisher: John Wiley & Sons
ISBN: 1119561086
Category : Mathematics
Languages : de
Pages : 672
Book Description
Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.
Publisher: John Wiley & Sons
ISBN: 1119561086
Category : Mathematics
Languages : de
Pages : 672
Book Description
Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.
Introduction to Tensor Analysis and the Calculus of Moving Surfaces
Author: Pavel Grinfeld
Publisher: Springer Science & Business Media
ISBN: 1461478677
Category : Mathematics
Languages : en
Pages : 303
Book Description
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Publisher: Springer Science & Business Media
ISBN: 1461478677
Category : Mathematics
Languages : en
Pages : 303
Book Description
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Anisotropy Across Fields and Scales
Author: Evren Özarslan
Publisher: Springer Nature
ISBN: 3030562158
Category : Algebra
Languages : en
Pages : 284
Book Description
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Publisher: Springer Nature
ISBN: 3030562158
Category : Algebra
Languages : en
Pages : 284
Book Description
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Tensor Eigenvalues and Their Applications
Author: Liqun Qi
Publisher: Springer
ISBN: 9811080585
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Publisher: Springer
ISBN: 9811080585
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.