Author: Bhaben Chandra Kalita
Publisher: CRC Press
ISBN: 0429647565
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Tensor Calculus and Applications
Author: Bhaben Chandra Kalita
Publisher: CRC Press
ISBN: 0429647565
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Publisher: CRC Press
ISBN: 0429647565
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Vector and Tensor Analysis with Applications
Author: A. I. Borisenko
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Tensor Calculus and Analytical Dynamics
Author: John G. Papastavridis
Publisher: Routledge
ISBN: 1351411616
Category : Mathematics
Languages : en
Pages : 444
Book Description
Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.
Publisher: Routledge
ISBN: 1351411616
Category : Mathematics
Languages : en
Pages : 444
Book Description
Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.
Tensor Calculus
Author: J. L. Synge
Publisher: Courier Corporation
ISBN: 048614139X
Category : Mathematics
Languages : en
Pages : 340
Book Description
Fundamental introduction of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, more.
Publisher: Courier Corporation
ISBN: 048614139X
Category : Mathematics
Languages : en
Pages : 340
Book Description
Fundamental introduction of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, more.
Tensor Calculus With Applications
Author: Vladislav V Goldberg
Publisher: World Scientific Publishing Company
ISBN: 981310225X
Category : Science
Languages : en
Pages : 381
Book Description
This textbook presents the foundations of tensor calculus and the elements of tensor analysis. In addition, the authors consider numerous applications of tensors to geometry, mechanics and physics.While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, since such tensors are important in applications to physics and engineering.With regard to applications, the authors construct the general theory of second-degree surfaces, study the inertia tensor as well as the stress and strain tensors, and consider some problems of crystallophysics. The last chapter introduces the elements of tensor analysis.All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book presents problems (a total over 300 problems are given). Examples and problems are intended to illustrate, reinforce and deepen the presented material. There are answers to most of the problems, as well as hints and solutions to selected problems at the end of the book.
Publisher: World Scientific Publishing Company
ISBN: 981310225X
Category : Science
Languages : en
Pages : 381
Book Description
This textbook presents the foundations of tensor calculus and the elements of tensor analysis. In addition, the authors consider numerous applications of tensors to geometry, mechanics and physics.While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, since such tensors are important in applications to physics and engineering.With regard to applications, the authors construct the general theory of second-degree surfaces, study the inertia tensor as well as the stress and strain tensors, and consider some problems of crystallophysics. The last chapter introduces the elements of tensor analysis.All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book presents problems (a total over 300 problems are given). Examples and problems are intended to illustrate, reinforce and deepen the presented material. There are answers to most of the problems, as well as hints and solutions to selected problems at the end of the book.
Tensor and Vector Analysis
Author: C. E. Springer
Publisher: Courier Corporation
ISBN: 048632091X
Category : Mathematics
Languages : en
Pages : 258
Book Description
Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.
Publisher: Courier Corporation
ISBN: 048632091X
Category : Mathematics
Languages : en
Pages : 258
Book Description
Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.
Ricci-Calculus
Author: Jan Arnoldus Schouten
Publisher: Springer Science & Business Media
ISBN: 3662129272
Category : Mathematics
Languages : en
Pages : 535
Book Description
This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and li, and this book not only gave the first systematic introduction to the kernel index method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI cal culus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applica tions have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full.
Publisher: Springer Science & Business Media
ISBN: 3662129272
Category : Mathematics
Languages : en
Pages : 535
Book Description
This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and li, and this book not only gave the first systematic introduction to the kernel index method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI cal culus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applica tions have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full.
Matrix and Tensor Calculus
Author: Aristotle D. Michal
Publisher:
ISBN: 9780486462462
Category : Calculus of tensors
Languages : en
Pages : 0
Book Description
This volume offers a working knowledge of the fundamentals of matrix and tensor calculus. Relevant to several fields, particularly aeronautical engineering, the text skillfully combines mathematical statements with practical applications. 1947 edition.
Publisher:
ISBN: 9780486462462
Category : Calculus of tensors
Languages : en
Pages : 0
Book Description
This volume offers a working knowledge of the fundamentals of matrix and tensor calculus. Relevant to several fields, particularly aeronautical engineering, the text skillfully combines mathematical statements with practical applications. 1947 edition.
Tensor Calculus for Physics
Author: Dwight E. Neuenschwander
Publisher: JHU Press
ISBN: 142141564X
Category : Mathematics
Languages : en
Pages : 244
Book Description
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"
Publisher: JHU Press
ISBN: 142141564X
Category : Mathematics
Languages : en
Pages : 244
Book Description
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"
Manifolds, Tensor Analysis, and Applications
Author: Ralph Abraham
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666
Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666
Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.