Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics PDF full book. Access full book title Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics by Farida Selim. Download full books in PDF and EPUB format.

Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics

Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics PDF Author: Farida Selim
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
ZnO thin films are synthesized and studied to understand the functionality of solution-processed semiconductor devices. A simple sol-gel technique is used to fabricate transparent conductive oxides (TCOs) and ultraviolet (UV) photodetectors from ZnO precursors via spin coating, inkjet printing (IJP), and aerosol jet printing (AJP). A variety of flexible and transparent substrates was selected based on the deposition and sintering conditions and the device application. Doping of ZnO films with Al3+, In3+, and Ga3+ was introduced in precursor solutions before deposition processes. Post-deposition processing was carried out in air, H2, and Zn environments to optimize thin film properties. Optical, structural, and electronic data analyses reveal the significant effects that deposition method, substrates, dopants, and processing conditions have on the optical transmission, crystallinity, grain size, and electrical conductivity.

Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics

Synthesis of Conductive Sol-Gel ZnO Films and Development of ZnO Printed Electronics PDF Author: Farida Selim
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
ZnO thin films are synthesized and studied to understand the functionality of solution-processed semiconductor devices. A simple sol-gel technique is used to fabricate transparent conductive oxides (TCOs) and ultraviolet (UV) photodetectors from ZnO precursors via spin coating, inkjet printing (IJP), and aerosol jet printing (AJP). A variety of flexible and transparent substrates was selected based on the deposition and sintering conditions and the device application. Doping of ZnO films with Al3+, In3+, and Ga3+ was introduced in precursor solutions before deposition processes. Post-deposition processing was carried out in air, H2, and Zn environments to optimize thin film properties. Optical, structural, and electronic data analyses reveal the significant effects that deposition method, substrates, dopants, and processing conditions have on the optical transmission, crystallinity, grain size, and electrical conductivity.

Sol-Gel Method

Sol-Gel Method PDF Author: Guadalupe Valverde Aguilar
Publisher: BoD – Books on Demand
ISBN: 1789853338
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
The sol-gel method is a powerful route of synthesis used worldwide. It produces bulk, nano- and mesostructured sol-gel materials, which can encapsulate metallic and magnetic nanoparticles, non-linear azochromophores, perovskites, organic dyes, biological molecules, etc.. This can have interesting applications for catalysis, photocatalysis; drug delivery for treatment of neurodegenerative diseases such as cancer, Parkinson's and Azheimer's. In this book, valuable contributions related to novel materials synthesized by the sol-gel route are provided. The effect of the sol-gel method to synthesize these materials with potential properties is described, and how the variation of the parameters during the synthesis influences their design and allows to adjust their properties according to the desired application is discussed.

Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells

Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells PDF Author: Siti Salwa Alias
Publisher: Springer Science & Business Media
ISBN: 9814560774
Category : Technology & Engineering
Languages : en
Pages : 59

Book Description
This book focuses on the study of synthesized ZnO powder using Zn(CH3COO)2∙2H2O precursor, methanol (as solvent), and sodium hydroxide (NaOH) to vary the pH. The successfully synthesized ZnO powder from the sol-gel centrifugation and sol-gel storage methods were characterized and investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV–visible spectroscopy, and photoluminescence test to compare the properties of the nanoparticles. The best characteristic of the ZnO powder from both methods was observed when the powders were coated on an ITO glass to fabricate a PEC. The current density–voltage performances of both PECs were investigated under luminescent and dark conditions.

Synthesis and Characterization of ZnO/Graphene Nanostructures for Electronics and Photocatalysis

Synthesis and Characterization of ZnO/Graphene Nanostructures for Electronics and Photocatalysis PDF Author: Seyed Ebrahim Chalangar
Publisher: Linköping University Electronic Press
ISBN: 9179296823
Category :
Languages : en
Pages : 132

Book Description
Recent rapid development of electronics and electro-optical devices demands affordable and reliable materials with enhanced performance. Forming nanocomposites of already well-known materials is one possible route towards novel functional materials with desirable synergistic enhanced properties. Incompatible chemical properties, mismatched crystal structures and weak bonding interactions between the substances, however, often limit the number of possible nanocomposites. Moreover, using an inexpensive, facile, large-area and flexible fabrication technique is crucial to employ the new composites in industrially viable applications. This thesis focuses on the synthesis and characterization of different zinc oxide/graphene (ZnO/GR) nanocomposites, well suited for optoelectronics and photocatalysis applications. Two different approaches of i) substrate-free random synthesis, and ii) template-assisted selective area synthesis were studied in detail. In the first approach, ZnO nanoparticles/rods were grown on GR. The obtained nanocomposites were investigated for better GR dispersity, electrical conductivity and optical properties. Besides, by adding silver iodide to the nanocomposite, an enhanced plasmonic solar-driven photocatalyst was synthesized and analyzed. In the second approach, arrays of single, vertically aligned ZnO nanorods were synthesized using a colloidal lithography-patterned sol-gel ZnO seed layer. Our demonstrated nanofabrication technique with simple, substrate independent, and large wafer-scale area compatibility improved the alignment and surface density of ZnO nanorods over large selective growth areas. Eventually, we found a novel method to further enhance the vertical alignment of the ZnO nanorods by introducing a GR buffer layer between the Si substrate and the ZnO seed layer, together with the mentioned patterning technique. The synthesized nanocomposites were analyzed using a large variety of experimental techniques including electron microscopy, photoelectron spectroscopy, x-ray diffraction, photoluminescence and cathodoluminescence spectroscopy for in-depth studies of their morphology, chemical and optical properties. Our findings show that the designed ZnO/GR nanocomposites with vertically aligned ZnO nanorods of high crystalline quality, synthesized with the developed low-cost nanofabrication technique, can lead to novel devices offering higher performance at a significantly lower fabrication cost.

Recent Applications in Sol-Gel Synthesis

Recent Applications in Sol-Gel Synthesis PDF Author: Usha Chandra
Publisher: BoD – Books on Demand
ISBN: 9535132458
Category : Science
Languages : en
Pages : 312

Book Description
Versatility, extended compositional ranges, better homogeneity, lesser energy consumption, and requirement of nonexpensive equipments have boosted the use of sol-gel process on top of the popularity in the synthesis of nanosystems. The sol-gel technique has not only revolutionized oxide ceramics industry and/or material science but has also extended widely into multidimensional applications. The book Recent Applications in Sol-Gel Synthesis comprises 14 chapters that deal mainly with the application-oriented aspects of the technique. Sol-gel prepared metal oxide (MO) nanostructures like nanospheres, nanorods, nanoflakes, nanotubes, and nanoribbons have been employed in biomedical applications involving drug deliveries, mimicking of natural bone, and antimicrobial activities. The possibility of controlling grain size in aerogel and preparation of ultrahigh-temperature ceramic (UHTC)-based materials, fluorescent glasses, ultraviolet photosensors, and photocatalysts have been discussed in detail by the experts in the field. The usefulness of sol-gel materials as active GRIN, as textile finisher, and as leather modifier with water-repellent and oil-resistive properties would be an incentive for researchers keen to pursue the field.

SYNTHESIS AND CHARACTERIZATION OF TRANSPARENT CONDUCTIVE ZINC OXIDE THIN FILMS BY SOL-GEL SPIN COATING METHOD

SYNTHESIS AND CHARACTERIZATION OF TRANSPARENT CONDUCTIVE ZINC OXIDE THIN FILMS BY SOL-GEL SPIN COATING METHOD PDF Author: David Winarski
Publisher:
ISBN:
Category : Oxide coating
Languages : en
Pages : 87

Book Description
Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 × 1021 cm-3.

Nanostructured Materials

Nanostructured Materials PDF Author: Mohindar Seehra
Publisher: BoD – Books on Demand
ISBN: 9535133713
Category : Technology & Engineering
Languages : en
Pages : 225

Book Description
There continues to be a worldwide interest in the size-dependent properties of nanostructured materials and their applications in many diverse fields such as catalysis, sensors, energy conversion processes, and biomedicine to name a few. The eleven chapters of this book written by different researchers include four chapters on the different methods of fabrication of specific materials followed by characterization of their properties, and the remaining seven chapters focusing on the fabrications and applications including three chapters on biomedical applications, two chapters on sensors, one chapter on solar cells, and one chapter on the use of nanoparticles in herbicides. These chapters provide up-to-date reviews useful for current and future researchers in these specific areas.

ZnO Nanostructure Synthesis & Laser Direct Writing Process for Optoelectronic Devices

ZnO Nanostructure Synthesis & Laser Direct Writing Process for Optoelectronic Devices PDF Author: DAEHO LEE
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Book Description
Zinc oxide (ZnO) has a long history of usage in electronics. Recently, ZnO has been gathering great interest of researchers in nanoscience due to its diverse and versatile morphologies such as nanoparticles (NP), nanowires (NW), nanorods, nanotubes, nanohelixes, etc. This dissertation deals with studies covering from the synthesis of ZnO nanostructures to deposition & patterning methods and their applications for optoelectronic devices such as transparent electrodes, active layers for thin film transistor and photovoltaics. A very well-dispersed, transparent and concentration-tunable ZnO NP solution was successfully synthesized with a new process. Highly transparent ZnO thin films were fabricated by spin coating and subsequent ultra short-pulsed UV laser annealing was performed to change the film properties. While as-deposited NP thin films were not electrically conductive, laser annealing imparted a substantial conductivity increase. Thus, selective annealing for conductive patterns directly on the NP thin film without a photolithographic process was achieved. The conductivity is by a factor of 105 higher than that of the previously reported furnace-annealed ZnO NP films and even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The ZnO film obtained from the process developed in this work has been applied to the fabrication of a thin film transistor (TFT) showing enhanced performance compared with the TFT fabricated on furnace annealed ZnO film. The ZnO TFT performance test reveals that by just changing the laser annealing parameters the solution-deposited ZnO thin film properties can be tuned suitable for both transparent conductors and semiconductor active layers. Two kinds of nanomaterial patterning methods via direct writing have been demonstrated. First, laser-assisted nanoimprinting of metal and semiconductor nanoparticles has been presented as a large area one step patterning method. With the method, submicron structures including mesh, line, nanopillar and nanowire arrays were fabricated on various kinds of wafer scale substrates. Using the rapid laser-based nanolithography, the prohibitive constraints of e-beam patterning could be overcome. Therefore, this method opens a way to the fabrication of electronic and energy devices with high throughput and ultra low-cost. Second, a drop on demand (DOD) inkjet printing of ZnO seed layers integrated with a CAD (computer aided design) system for a fully digital selective ZnO NW array growth has been discussed. Through proper natural convection suppression during the hydrothermal growth, successful ZnO nanowire local growth could be achieved. Without any need for the photolithographic process or stamp preparation, the NW growth location can be easily modified with high degree of freedom. These two methods are compatible with flexible plastic substrates. As an application of ZnO nanostructures for high efficiency solar cells, ZnO dye-sensitized solar cells (DSSCs) with greatly enhanced surface area for higher dye loading and light harvesting were demonstrated. The selective growth of "nanoforests" composed of high density, long branched tree-like multi generation hierarchical ZnO nanowire photoanodes by utilizing seed particles and a capping polymer increased the energy conversion efficiency significantly. The overall light-conversion efficiency of the branched ZnO nanowire DSSCs was almost 5 times higher than the efficiency of DSSCs constructed by upstanding ZnO nanowires. A parametric study to determine the optimum hierarchical ZnO nanowire photoanode was performed through the combination of both length-wise and branched growth processes.

Multifunctional Oxide-Based Materials: From Synthesis to Application

Multifunctional Oxide-Based Materials: From Synthesis to Application PDF Author: Teofil Jesionowski
Publisher: MDPI
ISBN: 3039213970
Category : Science
Languages : en
Pages : 204

Book Description
The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use

Zinc Oxide Materials for Electronic and Optoelectronic Device Applications

Zinc Oxide Materials for Electronic and Optoelectronic Device Applications PDF Author: Cole W. Litton
Publisher: John Wiley & Sons
ISBN: 0470519711
Category : Technology & Engineering
Languages : en
Pages : 403

Book Description
Zinc Oxide (ZnO) powder has been widely used as a white paint pigment and industrial processing chemical for nearly 150 years. However, following a rediscovery of ZnO and its potential applications in the 1950s, science and industry alike began to realize that ZnO had many interesting novel properties that were worthy of further investigation. ZnO is a leading candidate for the next generation of electronics, and its biocompatibility makes it viable for medical devices. This book covers recent advances including crystal growth, processing and doping and also discusses the problems and issues that seem to be impeding the commercialization of devices. Topics include: Energy band structure and spintronics Fundamental optical and electronic properties Electronic contacts of ZnO Growth of ZnO crystals and substrates Ultraviolet photodetectors ZnO quantum wells Zinc Oxide Materials for Electronic and Optoelectronic Device Applications is ideal for university, government, and industrial research and development laboratories, particularly those engaged in ZnO and related materials research.