Author: Matt Hawkins
Publisher: Image Comics
ISBN: 1632159821
Category : Comics & Graphic Novels
Languages : en
Pages : 132
Book Description
Utopia is here. Hunger, sickness, work... all relics of a long forgotten past. All individuality, creativity, and negative emotions have been genetically bred out and medically suppressed. The population is limited to segregated areas, but when a natural disaster disrupts the status quo and Michael and Maricela from two different worlds meet and fall in love, their relationship sparks a revolution. Will their love cause the salvation or destruction of mankind? Collects SYMMETRY #1-4
Symmetry Vol. 1
Author: Matt Hawkins
Publisher: Image Comics
ISBN: 1632159821
Category : Comics & Graphic Novels
Languages : en
Pages : 132
Book Description
Utopia is here. Hunger, sickness, work... all relics of a long forgotten past. All individuality, creativity, and negative emotions have been genetically bred out and medically suppressed. The population is limited to segregated areas, but when a natural disaster disrupts the status quo and Michael and Maricela from two different worlds meet and fall in love, their relationship sparks a revolution. Will their love cause the salvation or destruction of mankind? Collects SYMMETRY #1-4
Publisher: Image Comics
ISBN: 1632159821
Category : Comics & Graphic Novels
Languages : en
Pages : 132
Book Description
Utopia is here. Hunger, sickness, work... all relics of a long forgotten past. All individuality, creativity, and negative emotions have been genetically bred out and medically suppressed. The population is limited to segregated areas, but when a natural disaster disrupts the status quo and Michael and Maricela from two different worlds meet and fall in love, their relationship sparks a revolution. Will their love cause the salvation or destruction of mankind? Collects SYMMETRY #1-4
Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Symmetry
Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Symmetry Theory in Molecular Physics with Mathematica
Author: William McClain
Publisher: Springer Science & Business Media
ISBN: 0387734708
Category : Science
Languages : en
Pages : 672
Book Description
Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.
Publisher: Springer Science & Business Media
ISBN: 0387734708
Category : Science
Languages : en
Pages : 672
Book Description
Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.
Symmetry Groups and Their Applications
Author:
Publisher: Academic Press
ISBN: 0080873650
Category : Mathematics
Languages : en
Pages : 445
Book Description
Symmetry Groups and Their Applications
Publisher: Academic Press
ISBN: 0080873650
Category : Mathematics
Languages : en
Pages : 445
Book Description
Symmetry Groups and Their Applications
Symmetry Vol. 2
Author: Matt Hawkins
Publisher: Image Comics
ISBN: 1534302573
Category : Comics & Graphic Novels
Languages : en
Pages : 132
Book Description
ADVANCE SOLICIT In a perfectly ordered Utopia, Julia is the anomaly that signals change. The child of star- crossed lovers, raised in secret by a benevolent A.I., Julia„and the friends and foes she is about to encounter„present humanity with a golden opportunity for societal evolution...or an excuse to show its darkest nature. Collects SYMMETRY #5-8.
Publisher: Image Comics
ISBN: 1534302573
Category : Comics & Graphic Novels
Languages : en
Pages : 132
Book Description
ADVANCE SOLICIT In a perfectly ordered Utopia, Julia is the anomaly that signals change. The child of star- crossed lovers, raised in secret by a benevolent A.I., Julia„and the friends and foes she is about to encounter„present humanity with a golden opportunity for societal evolution...or an excuse to show its darkest nature. Collects SYMMETRY #5-8.
Symmetry, Representations, and Invariants
Author: Roe Goodman
Publisher: Springer Science & Business Media
ISBN: 0387798528
Category : Mathematics
Languages : en
Pages : 731
Book Description
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Publisher: Springer Science & Business Media
ISBN: 0387798528
Category : Mathematics
Languages : en
Pages : 731
Book Description
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Symmetry Comes of Age
Author: Dorothy Koster Washburn
Publisher: University of Washington Press
ISBN: 9780295983660
Category : Art
Languages : en
Pages : 396
Book Description
The two volumes together offer readers a new window into the communicative importance of design."--Jacket.
Publisher: University of Washington Press
ISBN: 9780295983660
Category : Art
Languages : en
Pages : 396
Book Description
The two volumes together offer readers a new window into the communicative importance of design."--Jacket.
Aspects of Symmetry
Author: Sidney Coleman
Publisher: Cambridge University Press
ISBN: 1139810960
Category : Science
Languages : en
Pages : 424
Book Description
For almost two decades, Sidney Coleman has been giving review lectures on frontier topics in theoretical high-energy physics at the International School of Subnuclear Physics held each year at Erice, Sicily. This volume is a collection of some of the best of these lectures. To this day they have few rivals for clarity of exposition and depth of insight. Although very popular when first published, many of the lectures have been difficult to obtain recently. Graduate students and professionals in high-energy physics will welcome this collection by a master of the field.
Publisher: Cambridge University Press
ISBN: 1139810960
Category : Science
Languages : en
Pages : 424
Book Description
For almost two decades, Sidney Coleman has been giving review lectures on frontier topics in theoretical high-energy physics at the International School of Subnuclear Physics held each year at Erice, Sicily. This volume is a collection of some of the best of these lectures. To this day they have few rivals for clarity of exposition and depth of insight. Although very popular when first published, many of the lectures have been difficult to obtain recently. Graduate students and professionals in high-energy physics will welcome this collection by a master of the field.
Mirror Symmetry
Author: Claire Voisin
Publisher: American Mathematical Soc.
ISBN: 9780821819470
Category : Mathematics
Languages : en
Pages : 148
Book Description
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.
Publisher: American Mathematical Soc.
ISBN: 9780821819470
Category : Mathematics
Languages : en
Pages : 148
Book Description
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.