Author: Ted Dobson
Publisher: Cambridge University Press
ISBN: 1108429068
Category : Language Arts & Disciplines
Languages : en
Pages : 527
Book Description
The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.
Symmetry in Graphs
Author: Ted Dobson
Publisher: Cambridge University Press
ISBN: 1108429068
Category : Language Arts & Disciplines
Languages : en
Pages : 527
Book Description
The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.
Publisher: Cambridge University Press
ISBN: 1108429068
Category : Language Arts & Disciplines
Languages : en
Pages : 527
Book Description
The first full-length book on the theme of symmetry in graphs, a fast-growing topic in algebraic graph theory.
Symmetry in Graph Theory
Author: Jose M. Rodriguez
Publisher: MDPI
ISBN: 303897658X
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of “Graph Theory”. Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view.
Publisher: MDPI
ISBN: 303897658X
Category : Mathematics
Languages : en
Pages : 340
Book Description
This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of “Graph Theory”. Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view.
Graph Symmetry
Author: Gena Hahn
Publisher: Springer Science & Business Media
ISBN: 9780792346685
Category : Mathematics
Languages : en
Pages : 456
Book Description
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of such graphs. A number of symposia and congresses (such as the bi-annual IWIN, starting in 1991) bear witness to the interest of the computer science community in this subject. On the mathematical side, and independently of any interest in applications, progress in group theory has made it possible to make a realistic attempt at a complete description of vertex-transitive graphs. The classification of the finite simple groups has played an important role in this respect.
Publisher: Springer Science & Business Media
ISBN: 9780792346685
Category : Mathematics
Languages : en
Pages : 456
Book Description
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of such graphs. A number of symposia and congresses (such as the bi-annual IWIN, starting in 1991) bear witness to the interest of the computer science community in this subject. On the mathematical side, and independently of any interest in applications, progress in group theory has made it possible to make a realistic attempt at a complete description of vertex-transitive graphs. The classification of the finite simple groups has played an important role in this respect.
Isomorphisms, Symmetry and Computations in Algebraic Graph Theory
Author: Gareth A. Jones
Publisher: Springer Nature
ISBN: 3030328082
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book consists of a selection of peer-reviewed contributions to the Workshop on Algebraic Graph Theory that took place in Pilsen, Czech Republic in October 2016. Primarily intended for early career researchers, it presents eight self-contained articles on a selection of topics within algebraic combinatorics, ranging from association schemes to symmetries of graphs and isomorphism testing. Algebraic combinatorics is a compelling mathematical discipline based on the powerful interplay of algebraic and combinatorial methods. Algebraic interpretation of combinatorial structures (such as symmetry or regularity) has often led to enlightening discoveries and powerful results, while discrete and combinatorial structures have given rise to new algebraic structures that have found valuable applications. In addition to these original research contributions, the reader will find a survey linking numerous threads in algebraic combinatorics, and an extensive tutorial showcasing the universality of algebraic methods in the study of combinatorial structures.
Publisher: Springer Nature
ISBN: 3030328082
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book consists of a selection of peer-reviewed contributions to the Workshop on Algebraic Graph Theory that took place in Pilsen, Czech Republic in October 2016. Primarily intended for early career researchers, it presents eight self-contained articles on a selection of topics within algebraic combinatorics, ranging from association schemes to symmetries of graphs and isomorphism testing. Algebraic combinatorics is a compelling mathematical discipline based on the powerful interplay of algebraic and combinatorial methods. Algebraic interpretation of combinatorial structures (such as symmetry or regularity) has often led to enlightening discoveries and powerful results, while discrete and combinatorial structures have given rise to new algebraic structures that have found valuable applications. In addition to these original research contributions, the reader will find a survey linking numerous threads in algebraic combinatorics, and an extensive tutorial showcasing the universality of algebraic methods in the study of combinatorial structures.
Distance-Regular Graphs
Author: Andries E. Brouwer
Publisher: Springer Science & Business Media
ISBN: 3642743412
Category : Mathematics
Languages : en
Pages : 513
Book Description
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
Publisher: Springer Science & Business Media
ISBN: 3642743412
Category : Mathematics
Languages : en
Pages : 513
Book Description
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
Incidence and Symmetry in Design and Architecture
Author: Jenny A. Baglivo
Publisher: Cambridge University Press
ISBN: 9780521230438
Category : Mathematics
Languages : en
Pages : 319
Book Description
The initial purposes of this 1983 text were to develop mathematical topics relevant to the study of the incidence and symmetry structures of geometrical objects and to expand the reader's geometric intuition. The two fundamental mathematical topics employed in this endeavor are graph theory and the theory of transformation groups. Part I, Incidence, starts with two sections on the basics of graph theory and continues with a variety of specific applications of graph theory. Following this, the text becomes more theoretical; here graph theory is used to study surfaces other than the plane and the sphere. Part II, Symmetry, starts with a section on rigid motions or symmetries of the plane, which is followed by another on the classification of planar patterns. Additionally, an overview of symmetry in three-dimensional space is provided, along with a reconciliation of graph theory and group theory in a study of enumeration problems in geometry.
Publisher: Cambridge University Press
ISBN: 9780521230438
Category : Mathematics
Languages : en
Pages : 319
Book Description
The initial purposes of this 1983 text were to develop mathematical topics relevant to the study of the incidence and symmetry structures of geometrical objects and to expand the reader's geometric intuition. The two fundamental mathematical topics employed in this endeavor are graph theory and the theory of transformation groups. Part I, Incidence, starts with two sections on the basics of graph theory and continues with a variety of specific applications of graph theory. Following this, the text becomes more theoretical; here graph theory is used to study surfaces other than the plane and the sphere. Part II, Symmetry, starts with a section on rigid motions or symmetries of the plane, which is followed by another on the classification of planar patterns. Additionally, an overview of symmetry in three-dimensional space is provided, along with a reconciliation of graph theory and group theory in a study of enumeration problems in geometry.
Why Beauty Is Truth
Author: Ian Stewart
Publisher:
ISBN: 0465082378
Category : Mathematics
Languages : en
Pages : 306
Book Description
Physics.
Publisher:
ISBN: 0465082378
Category : Mathematics
Languages : en
Pages : 306
Book Description
Physics.
Functions and Graphs
Author: I. M. Gelfand
Publisher: Courier Corporation
ISBN: 0486425649
Category : Mathematics
Languages : en
Pages : 116
Book Description
This volume presents students with problems and exercises designed to illuminate the properties of functions and graphs. The 1st part of the book employs simple functions to analyze the fundamental methods of constructing graphs. The 2nd half deals with more complicated and refined questions concerning linear functions, quadratic trinomials, linear fractional functions, power functions, and rational functions. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486425649
Category : Mathematics
Languages : en
Pages : 116
Book Description
This volume presents students with problems and exercises designed to illuminate the properties of functions and graphs. The 1st part of the book employs simple functions to analyze the fundamental methods of constructing graphs. The 2nd half deals with more complicated and refined questions concerning linear functions, quadratic trinomials, linear fractional functions, power functions, and rational functions. 1969 edition.
Algebraic Elements of Graphs
Author: Yanpei Liu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110480751
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author‘s original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110480751
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author‘s original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
Discrete Mathematics and Symmetry
Author: Angel Garrido
Publisher: MDPI
ISBN: 3039281909
Category : Mathematics
Languages : en
Pages : 458
Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.
Publisher: MDPI
ISBN: 3039281909
Category : Mathematics
Languages : en
Pages : 458
Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.