Subset Selection Algorithms with Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Subset Selection Algorithms with Applications PDF full book. Access full book title Subset Selection Algorithms with Applications by Shane Francis Cotter. Download full books in PDF and EPUB format.

Subset Selection Algorithms with Applications

Subset Selection Algorithms with Applications PDF Author: Shane Francis Cotter
Publisher:
ISBN:
Category :
Languages : en
Pages : 394

Book Description


Subset Selection Algorithms with Applications

Subset Selection Algorithms with Applications PDF Author: Shane Francis Cotter
Publisher:
ISBN:
Category :
Languages : en
Pages : 394

Book Description


Feature Extraction, Construction and Selection

Feature Extraction, Construction and Selection PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461557259
Category : Computers
Languages : en
Pages : 418

Book Description
There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem.

Machine Learning Under a Modern Optimization Lens

Machine Learning Under a Modern Optimization Lens PDF Author: Dimitris Bertsimas
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589

Book Description


Feature Engineering and Selection

Feature Engineering and Selection PDF Author: Max Kuhn
Publisher: CRC Press
ISBN: 1351609467
Category : Business & Economics
Languages : en
Pages : 266

Book Description
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.

Research and Development in Intelligent Systems XXI

Research and Development in Intelligent Systems XXI PDF Author: Frans Coenen
Publisher: Springer Science & Business Media
ISBN: 1846281024
Category : Computers
Languages : en
Pages : 343

Book Description
The refereed technical papers in this volume present new and innovative developments in this important field; essential reading for those who wish to keep up to date on intelligent systems.

Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225

Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJĀ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Data Mining: Concepts, Methodologies, Tools, and Applications

Data Mining: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1466624566
Category : Computers
Languages : en
Pages : 2335

Book Description
Data mining continues to be an emerging interdisciplinary field that offers the ability to extract information from an existing data set and translate that knowledge for end-users into an understandable way. Data Mining: Concepts, Methodologies, Tools, and Applications is a comprehensive collection of research on the latest advancements and developments of data mining and how it fits into the current technological world.

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Data Clustering: Theory, Algorithms, and Applications, Second Edition

Data Clustering: Theory, Algorithms, and Applications, Second Edition PDF Author: Guojun Gan
Publisher: SIAM
ISBN: 1611976332
Category : Mathematics
Languages : en
Pages : 430

Book Description
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 152251760X
Category : Computers
Languages : en
Pages : 3095

Book Description
Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.